3
Micro air vehicle / autopilot classes. This identifies the individual model.
Generic autopilot, full support for everything
PIXHAWK autopilot, http://pixhawk.ethz.ch
SLUGS autopilot, http://slugsuav.soe.ucsc.edu
ArduPilotMega / ArduCopter, http://diydrones.com
OpenPilot, http://openpilot.org
Generic autopilot only supporting simple waypoints
Generic autopilot supporting waypoints and other simple navigation commands
Generic autopilot supporting the full mission command set
No valid autopilot, e.g. a GCS or other MAVLink component
PPZ UAV - http://nongnu.org/paparazzi
UAV Dev Board
FlexiPilot
These flags encode the MAV mode.
0b10000000 MAV safety set to armed. Motors are enabled / running / can start. Ready to fly.
0b01000000 remote control input is enabled.
0b00100000 hardware in the loop simulation. All motors / actuators are blocked, but internal software is full operational.
0b00010000 system stabilizes electronically its attitude (and optionally position). It needs however further control inputs to move around.
0b00001000 guided mode enabled, system flies MISSIONs / mission items.
0b00000100 autonomous mode enabled, system finds its own goal positions. Guided flag can be set or not, depends on the actual implementation.
0b00000010 system has a test mode enabled. This flag is intended for temporary system tests and should not be used for stable implementations.
0b00000001 Reserved for future use.
These values encode the bit positions of the decode position. These values can be used to read the value of a flag bit by combining the base_mode variable with AND with the flag position value. The result will be either 0 or 1, depending on if the flag is set or not.
First bit: 10000000
Second bit: 01000000
Third bit: 00100000
Fourth bit: 00010000
Fifth bit: 00001000
Sixt bit: 00000100
Seventh bit: 00000010
Eighth bit: 00000001
These defines are predefined OR-combined mode flags. There is no need to use values from this enum, but it
simplifies the use of the mode flags. Note that manual input is enabled in all modes as a safety override.
System is not ready to fly, booting, calibrating, etc. No flag is set.
System is allowed to be active, under assisted RC control.
System is allowed to be active, under assisted RC control.
System is allowed to be active, under manual (RC) control, no stabilization
System is allowed to be active, under manual (RC) control, no stabilization
System is allowed to be active, under autonomous control, manual setpoint
System is allowed to be active, under autonomous control, manual setpoint
System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs)
System is allowed to be active, under autonomous control and navigation (the trajectory is decided onboard and not pre-programmed by MISSIONs)
UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only.
UNDEFINED mode. This solely depends on the autopilot - use with caution, intended for developers only.
Uninitialized system, state is unknown.
System is booting up.
System is calibrating and not flight-ready.
System is grounded and on standby. It can be launched any time.
System is active and might be already airborne. Motors are engaged.
System is in a non-normal flight mode. It can however still navigate.
System is in a non-normal flight mode. It lost control over parts or over the whole airframe. It is in mayday and going down.
System just initialized its power-down sequence, will shut down now.
Generic micro air vehicle.
Fixed wing aircraft.
Quadrotor
Coaxial helicopter
Normal helicopter with tail rotor.
Ground installation
Operator control unit / ground control station
Airship, controlled
Free balloon, uncontrolled
Rocket
Ground rover
Surface vessel, boat, ship
Submarine
Hexarotor
Octorotor
Octorotor
Flapping wing
Global coordinate frame, WGS84 coordinate system. First value / x: latitude, second value / y: longitude, third value / z: positive altitude over mean sea level (MSL)
Local coordinate frame, Z-up (x: north, y: east, z: down).
NOT a coordinate frame, indicates a mission command.
Global coordinate frame, WGS84 coordinate system, relative altitude over ground with respect to the home position. First value / x: latitude, second value / y: longitude, third value / z: positive altitude with 0 being at the altitude of the home location.
Local coordinate frame, Z-down (x: east, y: north, z: up)
Commands to be executed by the MAV. They can be executed on user request,
or as part of a mission script. If the action is used in a mission, the parameter mapping
to the waypoint/mission message is as follows:
Param 1, Param 2, Param 3, Param 4, X: Param 5, Y:Param 6, Z:Param 7. This command list is similar what
ARINC 424 is for commercial aircraft: A data format how to interpret waypoint/mission data.
Navigate to MISSION.
Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)
Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)
0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.
Desired yaw angle at MISSION (rotary wing)
Latitude
Longitude
Altitude
Loiter around this MISSION an unlimited amount of time
Empty
Empty
Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise
Desired yaw angle.
Latitude
Longitude
Altitude
Loiter around this MISSION for X turns
Turns
Empty
Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise
Desired yaw angle.
Latitude
Longitude
Altitude
Loiter around this MISSION for X seconds
Seconds (decimal)
Empty
Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise
Desired yaw angle.
Latitude
Longitude
Altitude
Return to launch location
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Land at location
Empty
Empty
Empty
Desired yaw angle.
Latitude
Longitude
Altitude
Takeoff from ground / hand
Minimum pitch (if airspeed sensor present), desired pitch without sensor
Empty
Empty
Yaw angle (if magnetometer present), ignored without magnetometer
Latitude
Longitude
Altitude
Sets the region of interest (ROI) for a sensor set or the
vehicle itself. This can then be used by the vehicles control
system to control the vehicle attitude and the attitude of various
sensors such as cameras.
Region of intereset mode. (see MAV_ROI enum)
MISSION index/ target ID. (see MAV_ROI enum)
ROI index (allows a vehicle to manage multiple ROI's)
Empty
x the location of the fixed ROI (see MAV_FRAME)
y
z
Control autonomous path planning on the MAV.
0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning
0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid
Empty
Yaw angle at goal, in compass degrees, [0..360]
Latitude/X of goal
Longitude/Y of goal
Altitude/Z of goal
NOP - This command is only used to mark the upper limit of the NAV/ACTION commands in the enumeration
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Delay mission state machine.
Delay in seconds (decimal)
Empty
Empty
Empty
Empty
Empty
Empty
Ascend/descend at rate. Delay mission state machine until desired altitude reached.
Descent / Ascend rate (m/s)
Empty
Empty
Empty
Empty
Empty
Finish Altitude
Delay mission state machine until within desired distance of next NAV point.
Distance (meters)
Empty
Empty
Empty
Empty
Empty
Empty
Reach a certain target angle.
target angle: [0-360], 0 is north
speed during yaw change:[deg per second]
direction: negative: counter clockwise, positive: clockwise [-1,1]
relative offset or absolute angle: [ 1,0]
Empty
Empty
Empty
NOP - This command is only used to mark the upper limit of the CONDITION commands in the enumeration
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Set system mode.
Mode, as defined by ENUM MAV_MODE
Empty
Empty
Empty
Empty
Empty
Empty
Jump to the desired command in the mission list. Repeat this action only the specified number of times
Sequence number
Repeat count
Empty
Empty
Empty
Empty
Empty
Change speed and/or throttle set points.
Speed type (0=Airspeed, 1=Ground Speed)
Speed (m/s, -1 indicates no change)
Throttle ( Percent, -1 indicates no change)
Empty
Empty
Empty
Empty
Changes the home location either to the current location or a specified location.
Use current (1=use current location, 0=use specified location)
Empty
Empty
Empty
Latitude
Longitude
Altitude
Set a system parameter. Caution! Use of this command requires knowledge of the numeric enumeration value of the parameter.
Parameter number
Parameter value
Empty
Empty
Empty
Empty
Empty
Set a relay to a condition.
Relay number
Setting (1=on, 0=off, others possible depending on system hardware)
Empty
Empty
Empty
Empty
Empty
Cycle a relay on and off for a desired number of cyles with a desired period.
Relay number
Cycle count
Cycle time (seconds, decimal)
Empty
Empty
Empty
Empty
Set a servo to a desired PWM value.
Servo number
PWM (microseconds, 1000 to 2000 typical)
Empty
Empty
Empty
Empty
Empty
Cycle a between its nominal setting and a desired PWM for a desired number of cycles with a desired period.
Servo number
PWM (microseconds, 1000 to 2000 typical)
Cycle count
Cycle time (seconds)
Empty
Empty
Empty
Control onboard camera system.
Camera ID (-1 for all)
Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw
Transmission mode: 0: video stream, >0: single images every n seconds (decimal)
Recording: 0: disabled, 1: enabled compressed, 2: enabled raw
Empty
Empty
Empty
NOP - This command is only used to mark the upper limit of the DO commands in the enumeration
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Trigger calibration. This command will be only accepted if in pre-flight mode.
Gyro calibration: 0: no, 1: yes
Magnetometer calibration: 0: no, 1: yes
Ground pressure: 0: no, 1: yes
Radio calibration: 0: no, 1: yes
Empty
Empty
Empty
Set sensor offsets. This command will be only accepted if in pre-flight mode.
Sensor to adjust the offsets for: 0: gyros, 1: accelerometer, 2: magnetometer, 3: barometer, 4: optical flow
X axis offset (or generic dimension 1), in the sensor's raw units
Y axis offset (or generic dimension 2), in the sensor's raw units
Z axis offset (or generic dimension 3), in the sensor's raw units
Generic dimension 4, in the sensor's raw units
Generic dimension 5, in the sensor's raw units
Generic dimension 6, in the sensor's raw units
Request storage of different parameter values and logs. This command will be only accepted if in pre-flight mode.
Parameter storage: 0: READ FROM FLASH/EEPROM, 1: WRITE CURRENT TO FLASH/EEPROM
Mission storage: 0: READ FROM FLASH/EEPROM, 1: WRITE CURRENT TO FLASH/EEPROM
Reserved
Reserved
Empty
Empty
Empty
Data stream IDs. A data stream is not a fixed set of messages, but rather a
recommendation to the autopilot software. Individual autopilots may or may not obey
the recommended messages.
Enable all data streams
Enable IMU_RAW, GPS_RAW, GPS_STATUS packets.
Enable GPS_STATUS, CONTROL_STATUS, AUX_STATUS
Enable RC_CHANNELS_SCALED, RC_CHANNELS_RAW, SERVO_OUTPUT_RAW
Enable ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT, NAV_CONTROLLER_OUTPUT.
Enable LOCAL_POSITION, GLOBAL_POSITION/GLOBAL_POSITION_INT messages.
Dependent on the autopilot
Dependent on the autopilot
Dependent on the autopilot
The ROI (region of interest) for the vehicle. This can be
be used by the vehicle for camera/vehicle attitude alignment (see
MAV_CMD_NAV_ROI).
No region of interest.
Point toward next MISSION.
Point toward given MISSION.
Point toward fixed location.
Point toward of given id.
ACK / NACK / ERROR values as a result of MAV_CMDs and for mission item transmission.
Command / mission item is ok.
Generic error message if none of the other reasons fails or if no detailed error reporting is implemented.
The system is refusing to accept this command from this source / communication partner.
Command or mission item is not supported, other commands would be accepted.
The coordinate frame of this command / mission item is not supported.
The coordinate frame of this command is ok, but he coordinate values exceed the safety limits of this system. This is a generic error, please use the more specific error messages below if possible.
The X or latitude value is out of range.
The Y or longitude value is out of range.
The Z or altitude value is out of range.
The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot).
Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM)
Autopilot type / class. defined in MAV_CLASS ENUM
System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h
Navigation mode bitfield, see MAV_AUTOPILOT_CUSTOM_MODE ENUM for some examples. This field is autopilot-specific.
System status flag, see MAV_STATUS ENUM
MAVLink version
The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout.
Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000
Battery voltage, in millivolts (1 = 1 millivolt)
Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current
Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery
Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
Autopilot-specific errors
Autopilot-specific errors
Autopilot-specific errors
Autopilot-specific errors
The system time is the time of the master clock, typically the computer clock of the main onboard computer.
Timestamp of the master clock in microseconds since UNIX epoch.
Timestamp of the component clock since boot time in milliseconds.
A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections.
Unix timestamp in microseconds
PING sequence
0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system
0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system
Request to control this MAV
System the GCS requests control for
0: request control of this MAV, 1: Release control of this MAV
0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch.
Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-"
Accept / deny control of this MAV
ID of the GCS this message
0: request control of this MAV, 1: Release control of this MAV
0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control
Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety.
key
Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component.
The system setting the mode
The new base mode
The new autopilot-specific mode. This field can be ignored by an autopilot.
Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code.
System ID
Component ID
Onboard parameter id
Parameter index. Send -1 to use the param ID field as identifier
Request all parameters of this component. After his request, all parameters are emitted.
System ID
Component ID
Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout.
Onboard parameter id
Onboard parameter value
Onboard parameter type: 0: float, 1: uint8_t, 2: int8_t, 3: uint16_t, 4: int16_t, 5: uint32_t, 6: int32_t
Total number of onboard parameters
Index of this onboard parameter
Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message.
System ID
Component ID
Onboard parameter id
Onboard parameter value
Onboard parameter type: 0: float, 1: uint8_t, 2: int8_t, 3: uint16_t, 4: int16_t, 5: uint32_t, 6: int32_t
The global position, as returned by the Global Positioning System (GPS). This is
NOT the global position estimate of the sytem, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame)
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix.
Latitude in 1E7 degrees
Longitude in 1E7 degrees
Altitude in 1E3 meters (millimeters) above MSL
GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535
GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535
GPS ground speed (m/s * 100). If unknown, set to: 65535
Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535
Number of satellites visible. If unknown, set to 255
The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites.
Number of satellites visible
Global satellite ID
0: Satellite not used, 1: used for localization
Elevation (0: right on top of receiver, 90: on the horizon) of satellite
Direction of satellite, 0: 0 deg, 255: 360 deg.
Signal to noise ratio of satellite
The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units
Timestamp (milliseconds since system boot)
X acceleration (mg)
Y acceleration (mg)
Z acceleration (mg)
Angular speed around X axis (millirad /sec)
Angular speed around Y axis (millirad /sec)
Angular speed around Z axis (millirad /sec)
X Magnetic field (milli tesla)
Y Magnetic field (milli tesla)
Z Magnetic field (milli tesla)
The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging.
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
X acceleration (raw)
Y acceleration (raw)
Z acceleration (raw)
Angular speed around X axis (raw)
Angular speed around Y axis (raw)
Angular speed around Z axis (raw)
X Magnetic field (raw)
Y Magnetic field (raw)
Z Magnetic field (raw)
The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values.
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
Absolute pressure (raw)
Differential pressure 1 (raw)
Differential pressure 2 (raw)
Raw Temperature measurement (raw)
The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field.
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
Absolute pressure (hectopascal)
Differential pressure 1 (hectopascal)
Temperature measurement (0.01 degrees celsius)
The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right).
Timestamp (milliseconds since system boot)
Roll angle (rad)
Pitch angle (rad)
Yaw angle (rad)
Roll angular speed (rad/s)
Pitch angular speed (rad/s)
Yaw angular speed (rad/s)
The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion.
Timestamp (milliseconds since system boot)
Quaternion component 1
Quaternion component 2
Quaternion component 3
Quaternion component 4
Roll angular speed (rad/s)
Pitch angular speed (rad/s)
Yaw angular speed (rad/s)
The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention)
Timestamp (milliseconds since system boot)
X Position
Y Position
Z Position
X Speed
Y Speed
Z Speed
The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It
is designed as scaled integer message since the resolution of float is not sufficient.
Timestamp (milliseconds since system boot)
Latitude, expressed as * 1E7
Longitude, expressed as * 1E7
Altitude in meters, expressed as * 1000 (millimeters), above MSL
Altitude above ground in meters, expressed as * 1000 (millimeters)
Ground X Speed (Latitude), expressed as m/s * 100
Ground Y Speed (Longitude), expressed as m/s * 100
Ground Z Speed (Altitude), expressed as m/s * 100
Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535
The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification.
Timestamp (milliseconds since system boot)
Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos.
RC channel 1 value, in microseconds
RC channel 2 value, in microseconds
RC channel 3 value, in microseconds
RC channel 4 value, in microseconds
RC channel 5 value, in microseconds
RC channel 6 value, in microseconds
RC channel 7 value, in microseconds
RC channel 8 value, in microseconds
Receive signal strength indicator, 0: 0%, 255: 100%
The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000
Timestamp (milliseconds since system boot)
Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos.
RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000
Receive signal strength indicator, 0: 0%, 255: 100%
The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%.
Timestamp (since UNIX epoch or microseconds since system boot)
Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos.
Servo output 1 value, in microseconds
Servo output 2 value, in microseconds
Servo output 3 value, in microseconds
Servo output 4 value, in microseconds
Servo output 5 value, in microseconds
Servo output 6 value, in microseconds
Servo output 7 value, in microseconds
Servo output 8 value, in microseconds
Message encoding a MISSION. This message is emitted to announce
the presence of a MISSION and to set a MISSION on the system. The MISSION can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed, global frame is Z-up, right handed
System ID
Component ID
Sequence
The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h
The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs
false:0, true:1
autocontinue to next wp
PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters
PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds
PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise.
PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH
PARAM5 / local: x position, global: latitude
PARAM6 / y position: global: longitude
PARAM7 / z position: global: altitude
Request the information of the MISSION with the sequence number seq. The response of the system to this message should be a MISSION message.
System ID
Component ID
Sequence
Set the MISSION with sequence number seq as current MISSION. This means that the MAV will continue to this MISSION on the shortest path (not following the MISSIONs in-between).
System ID
Component ID
Sequence
Message that announces the sequence number of the current active MISSION. The MAV will fly towards this MISSION.
Sequence
Request the overall list of MISSIONs from the system/component.
System ID
Component ID
This message is emitted as response to MISSION_REQUEST_LIST by the MAV. The GCS can then request the individual MISSIONs based on the knowledge of the total number of MISSIONs.
System ID
Component ID
Number of MISSIONs in the Sequence
Delete all mission items at once.
System ID
Component ID
A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION.
Sequence
Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero).
System ID
Component ID
0: OK, 1: generic error / not accepting mission commands at all right now, 2: coordinate frame is not supported, 3: command is not supported, 4: mission item exceeds storage space, 5: one of the parameters has an invalid value, 6: param1 has an invalid value, 7: param2 has an invalid value, 8: param3 has an invalid value, 9: param4 has an invalid value, 10: x/param5 has an invalid value, 11: y:param6 has an invalid value, 12: z:param7 has an invalid value, 13: received waypoint out of sequence, 14: not accepting any mission commands from this communication partner
As local MISSIONs exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor.
System ID
global position * 1E7
global position * 1E7
global position * 1000
Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position
Latitude (WGS84), expressed as * 1E7
Longitude (WGS84), expressed as * 1E7
Altitude(WGS84), expressed as * 1000
Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message.
System ID
Component ID
Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU
x position
y position
z position
Desired yaw angle
Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS.
Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU
x position
y position
z position
Desired yaw angle
Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS.
Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT
WGS84 Latitude position in degrees * 1E7
WGS84 Longitude position in degrees * 1E7
WGS84 Altitude in meters * 1000 (positive for up)
Desired yaw angle in degrees * 100
Set the current global position setpoint.
Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT
WGS84 Latitude position in degrees * 1E7
WGS84 Longitude position in degrees * 1E7
WGS84 Altitude in meters * 1000 (positive for up)
Desired yaw angle in degrees * 100
Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations.
System ID
Component ID
Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down.
x position 1 / Latitude 1
y position 1 / Longitude 1
z position 1 / Altitude 1
x position 2 / Latitude 2
y position 2 / Longitude 2
z position 2 / Altitude 2
Read out the safety zone the MAV currently assumes.
Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down.
x position 1 / Latitude 1
y position 1 / Longitude 1
z position 1 / Altitude 1
x position 2 / Latitude 2
y position 2 / Longitude 2
z position 2 / Altitude 2
Set roll, pitch and yaw.
System ID
Component ID
Desired roll angle in radians
Desired pitch angle in radians
Desired yaw angle in radians
Collective thrust, normalized to 0 .. 1
Set roll, pitch and yaw.
System ID
Component ID
Desired roll angular speed in rad/s
Desired pitch angular speed in rad/s
Desired yaw angular speed in rad/s
Collective thrust, normalized to 0 .. 1
Setpoint in roll, pitch, yaw currently active on the system.
Timestamp in milliseconds since system boot
Desired roll angle in radians
Desired pitch angle in radians
Desired yaw angle in radians
Collective thrust, normalized to 0 .. 1
Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system.
Timestamp in milliseconds since system boot
Desired roll angular speed in rad/s
Desired pitch angular speed in rad/s
Desired yaw angular speed in rad/s
Collective thrust, normalized to 0 .. 1
Outputs of the APM navigation controller. The primary use of this message is to check the response and signs
of the controller before actual flight and to assist with tuning controller parameters
Current desired roll in degrees
Current desired pitch in degrees
Current desired heading in degrees
Bearing to current MISSION/target in degrees
Distance to active MISSION in meters
Current altitude error in meters
Current airspeed error in meters/second
Current crosstrack error on x-y plane in meters
Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle.
x position error
y position error
z position error
roll error (radians)
pitch error (radians)
yaw error (radians)
x velocity
y velocity
z velocity
The target requested to send the message stream.
The target requested to send the message stream.
The ID of the requested data stream
The requested interval between two messages of this type
1 to start sending, 0 to stop sending.
The ID of the requested data stream
The requested interval between two messages of this type
1 stream is enabled, 0 stream is stopped.
The system to be controlled
roll
pitch
yaw
thrust
roll control enabled auto:0, manual:1
pitch auto:0, manual:1
yaw auto:0, manual:1
thrust auto:0, manual:1
The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification.
System ID
Component ID
RC channel 1 value, in microseconds
RC channel 2 value, in microseconds
RC channel 3 value, in microseconds
RC channel 4 value, in microseconds
RC channel 5 value, in microseconds
RC channel 6 value, in microseconds
RC channel 7 value, in microseconds
RC channel 8 value, in microseconds
Metrics typically displayed on a HUD for fixed wing aircraft
Current airspeed in m/s
Current ground speed in m/s
Current heading in degrees, in compass units (0..360, 0=north)
Current throttle setting in integer percent, 0 to 100
Current altitude (MSL), in meters
Current climb rate in meters/second
Send a command with up to four parameters to the MAV
System which should execute the command
Component which should execute the command, 0 for all components
Command ID, as defined by MAV_CMD enum.
0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command)
Parameter 1, as defined by MAV_CMD enum.
Parameter 2, as defined by MAV_CMD enum.
Parameter 3, as defined by MAV_CMD enum.
Parameter 4, as defined by MAV_CMD enum.
Send a command with up to four parameters to the MAV
System which should execute the command
Component which should execute the command, 0 for all components
Command ID, as defined by MAV_CMD enum.
0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command)
Parameter 1, as defined by MAV_CMD enum.
Parameter 2, as defined by MAV_CMD enum.
Parameter 3, as defined by MAV_CMD enum.
Parameter 4, as defined by MAV_CMD enum.
Parameter 5, as defined by MAV_CMD enum.
Parameter 6, as defined by MAV_CMD enum.
Parameter 7, as defined by MAV_CMD enum.
Report status of a command. Includes feedback wether the command was executed
Current airspeed in m/s
1: Action ACCEPTED and EXECUTED, 1: Action TEMPORARY REJECTED/DENIED, 2: Action PERMANENTLY DENIED, 3: Action UNKNOWN/UNSUPPORTED, 4: Requesting CONFIRMATION
Sent from simulation to autopilot. This packet is useful for high throughput
applications such as hardware in the loop simulations.
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
Roll angle (rad)
Pitch angle (rad)
Yaw angle (rad)
Roll angular speed (rad/s)
Pitch angular speed (rad/s)
Yaw angular speed (rad/s)
Latitude, expressed as * 1E7
Longitude, expressed as * 1E7
Altitude in meters, expressed as * 1000 (millimeters)
Ground X Speed (Latitude), expressed as m/s * 100
Ground Y Speed (Longitude), expressed as m/s * 100
Ground Z Speed (Altitude), expressed as m/s * 100
X acceleration (mg)
Y acceleration (mg)
Z acceleration (mg)
Sent from autopilot to simulation. Hardware in the loop control outputs
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
Control output -1 .. 1
Control output -1 .. 1
Control output -1 .. 1
Throttle 0 .. 1
Aux 1, -1 .. 1
Aux 2, -1 .. 1
Aux 3, -1 .. 1
Aux 4, -1 .. 1
System mode (MAV_MODE)
Navigation mode (MAV_NAV_MODE)
Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification.
Timestamp (microseconds since UNIX epoch or microseconds since system boot)
RC channel 1 value, in microseconds
RC channel 2 value, in microseconds
RC channel 3 value, in microseconds
RC channel 4 value, in microseconds
RC channel 5 value, in microseconds
RC channel 6 value, in microseconds
RC channel 7 value, in microseconds
RC channel 8 value, in microseconds
RC channel 9 value, in microseconds
RC channel 10 value, in microseconds
RC channel 11 value, in microseconds
RC channel 12 value, in microseconds
Receive signal strength indicator, 0: 0%, 255: 100%
Optical flow from a flow sensor (e.g. optical mouse sensor)
Timestamp (UNIX)
Sensor ID
Flow in pixels in x-sensor direction
Flow in pixels in y-sensor direction
Optical flow quality / confidence. 0: bad, 255: maximum quality
Ground distance in meters
Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output.
Starting address of the debug variables
Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below
Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14
Memory contents at specified address
Name
Timestamp
x
y
z
Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output.
Timestamp (milliseconds since system boot)
Name of the debug variable
Floating point value
Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output.
Timestamp (milliseconds since system boot)
Name of the debug variable
Signed integer value
Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz).
Severity of status, 0 = info message, 255 = critical fault
Status text message, without null termination character
Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N.
Timestamp (milliseconds since system boot)
index of debug variable
DEBUG value
Extended message spacer.
System which should execute the command
Component which should execute the command, 0 for all components
Retransmission / ACK flags