#!/usr/bin/env python ''' useful extra functions for use by mavlink clients Copyright Andrew Tridgell 2011 Released under GNU GPL version 3 or later ''' from math import * def kmh(mps): '''convert m/s to Km/h''' return mps*3.6 def altitude(press_abs, ground_press=955.0, ground_temp=30): '''calculate barometric altitude''' return log(ground_press/press_abs)*(ground_temp+273.15)*29271.267*0.001 def mag_heading(RAW_IMU, ATTITUDE, declination=0, SENSOR_OFFSETS=None, ofs=None): '''calculate heading from raw magnetometer''' mag_x = RAW_IMU.xmag mag_y = RAW_IMU.ymag mag_z = RAW_IMU.zmag if SENSOR_OFFSETS is not None and ofs is not None: mag_x += ofs[0] - SENSOR_OFFSETS.mag_ofs_x mag_y += ofs[1] - SENSOR_OFFSETS.mag_ofs_y mag_z += ofs[2] - SENSOR_OFFSETS.mag_ofs_z headX = mag_x*cos(ATTITUDE.pitch) + mag_y*sin(ATTITUDE.roll)*sin(ATTITUDE.pitch) + mag_z*cos(ATTITUDE.roll)*sin(ATTITUDE.pitch) headY = mag_y*cos(ATTITUDE.roll) - mag_z*sin(ATTITUDE.roll) heading = degrees(atan2(-headY,headX)) + declination if heading < 0: heading += 360 return heading def mag_field(RAW_IMU, SENSOR_OFFSETS=None, ofs=None): '''calculate magnetic field strength from raw magnetometer''' mag_x = RAW_IMU.xmag mag_y = RAW_IMU.ymag mag_z = RAW_IMU.zmag if SENSOR_OFFSETS is not None and ofs is not None: mag_x += ofs[0] - SENSOR_OFFSETS.mag_ofs_x mag_y += ofs[1] - SENSOR_OFFSETS.mag_ofs_y mag_z += ofs[2] - SENSOR_OFFSETS.mag_ofs_z return sqrt(mag_x**2 + mag_y**2 + mag_z**2) def angle_diff(angle1, angle2): '''show the difference between two angles in degrees''' ret = angle1 - angle2 if ret > 180: ret -= 360; if ret < -180: ret += 360 return ret lowpass_data = {} def lowpass(var, key, factor): '''a simple lowpass filter''' global lowpass_data if not key in lowpass_data: lowpass_data[key] = var else: lowpass_data[key] = factor*lowpass_data[key] + (1.0 - factor)*var return lowpass_data[key] last_delta = {} def delta(var, key): '''calculate slope''' global last_delta dv = 0 if key in last_delta: dv = var - last_delta[key] last_delta[key] = var return dv def delta_angle(var, key): '''calculate slope of an angle''' global last_delta dv = 0 if key in last_delta: dv = var - last_delta[key] last_delta[key] = var if dv > 180: dv -= 360 if dv < -180: dv += 360 return dv def roll_estimate(RAW_IMU,smooth=0.7): '''estimate roll from accelerometer''' rx = lowpass(RAW_IMU.xacc,'rx',smooth) ry = lowpass(RAW_IMU.yacc,'ry',smooth) rz = lowpass(RAW_IMU.zacc,'rz',smooth) return degrees(-asin(ry/sqrt(rx**2+ry**2+rz**2))) def pitch_estimate(RAW_IMU, smooth=0.7): '''estimate pitch from accelerometer''' rx = lowpass(RAW_IMU.xacc,'rx',smooth) ry = lowpass(RAW_IMU.yacc,'ry',smooth) rz = lowpass(RAW_IMU.zacc,'rz',smooth) return degrees(asin(rx/sqrt(rx**2+ry**2+rz**2))) def gravity(RAW_IMU, SENSOR_OFFSETS=None, ofs=None, smooth=0.7): '''estimate pitch from accelerometer''' rx = RAW_IMU.xacc ry = RAW_IMU.yacc rz = RAW_IMU.zacc+45 if SENSOR_OFFSETS is not None and ofs is not None: rx += ofs[0] - SENSOR_OFFSETS.accel_cal_x ry += ofs[1] - SENSOR_OFFSETS.accel_cal_y rz += ofs[2] - SENSOR_OFFSETS.accel_cal_z return lowpass(sqrt(rx**2+ry**2+rz**2)*0.01,'_gravity',smooth) def pitch_sim(SIMSTATE, GPS_RAW): '''estimate pitch from SIMSTATE accels''' xacc = SIMSTATE.xacc - lowpass(delta(GPS_RAW.v,"v")*6.6, "v", 0.9) zacc = SIMSTATE.zacc zacc += SIMSTATE.ygyro * GPS_RAW.v; if xacc/zacc >= 1: return 0 if xacc/zacc <= -1: return -0 return degrees(-asin(xacc/zacc)) def distance_two(GPS_RAW1, GPS_RAW2): '''distance between two points''' lat1 = radians(GPS_RAW1.lat) lat2 = radians(GPS_RAW2.lat) lon1 = radians(GPS_RAW1.lon) lon2 = radians(GPS_RAW2.lon) dLat = lat2 - lat1 dLon = lon2 - lon1 a = sin(0.5*dLat) * sin(0.5*dLat) + sin(0.5*dLon) * sin(0.5*dLon) * cos(lat1) * cos(lat2) c = 2.0 * atan2(sqrt(a), sqrt(1.0-a)) return 6371 * 1000 * c first_fix = None def distance_home(GPS_RAW): '''distance from first fix point''' global first_fix if first_fix == None or first_fix.fix_type < 2: first_fix = GPS_RAW return 0 return distance_two(GPS_RAW, first_fix)