// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2010 Vincent Lejeune // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_QR_H #define EIGEN_QR_H namespace Eigen { /** \ingroup QR_Module * * * \class HouseholderQR * * \brief Householder QR decomposition of a matrix * * \param MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R * such that * \f[ * \mathbf{A} = \mathbf{Q} \, \mathbf{R} * \f] * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. * The result is stored in a compact way compatible with LAPACK. * * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. * * This Householder QR decomposition is faster, but less numerically stable and less feature-full than * FullPivHouseholderQR or ColPivHouseholderQR. * * \sa MatrixBase::householderQr() */ template<typename _MatrixType> class HouseholderQR { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via HouseholderQR::compute(const MatrixType&). */ HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa HouseholderQR() */ HouseholderQR(Index rows, Index cols) : m_qr(rows, cols), m_hCoeffs((std::min)(rows,cols)), m_temp(cols), m_isInitialized(false) {} /** \brief Constructs a QR factorization from a given matrix * * This constructor computes the QR factorization of the matrix \a matrix by calling * the method compute(). It is a short cut for: * * \code * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); * qr.compute(matrix); * \endcode * * \sa compute() */ HouseholderQR(const MatrixType& matrix) : m_qr(matrix.rows(), matrix.cols()), m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), m_temp(matrix.cols()), m_isInitialized(false) { compute(matrix); } /** This method finds a solution x to the equation Ax=b, where A is the matrix of which * *this is the QR decomposition, if any exists. * * \param b the right-hand-side of the equation to solve. * * \returns a solution. * * \note The case where b is a matrix is not yet implemented. Also, this * code is space inefficient. * * \note_about_checking_solutions * * \note_about_arbitrary_choice_of_solution * * Example: \include HouseholderQR_solve.cpp * Output: \verbinclude HouseholderQR_solve.out */ template<typename Rhs> inline const internal::solve_retval<HouseholderQR, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived()); } /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. * * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: * * Example: \include HouseholderQR_householderQ.cpp * Output: \verbinclude HouseholderQR_householderQ.out */ HouseholderSequenceType householderQ() const { eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); } /** \returns a reference to the matrix where the Householder QR decomposition is stored * in a LAPACK-compatible way. */ const MatrixType& matrixQR() const { eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); return m_qr; } HouseholderQR& compute(const MatrixType& matrix); /** \returns the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * One way to work around that is to use logAbsDeterminant() instead. * * \sa logAbsDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar absDeterminant() const; /** \returns the natural log of the absolute value of the determinant of the matrix of which * *this is the QR decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the QR decomposition has already been computed. * * \note This is only for square matrices. * * \note This method is useful to work around the risk of overflow/underflow that's inherent * to determinant computation. * * \sa absDeterminant(), MatrixBase::determinant() */ typename MatrixType::RealScalar logAbsDeterminant() const; inline Index rows() const { return m_qr.rows(); } inline Index cols() const { return m_qr.cols(); } /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. * * For advanced uses only. */ const HCoeffsType& hCoeffs() const { return m_hCoeffs; } protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } MatrixType m_qr; HCoeffsType m_hCoeffs; RowVectorType m_temp; bool m_isInitialized; }; template<typename MatrixType> typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const { using std::abs; eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return abs(m_qr.diagonal().prod()); } template<typename MatrixType> typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const { eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); return m_qr.diagonal().cwiseAbs().array().log().sum(); } namespace internal { /** \internal */ template<typename MatrixQR, typename HCoeffs> void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) { typedef typename MatrixQR::Index Index; typedef typename MatrixQR::Scalar Scalar; typedef typename MatrixQR::RealScalar RealScalar; Index rows = mat.rows(); Index cols = mat.cols(); Index size = (std::min)(rows,cols); eigen_assert(hCoeffs.size() == size); typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; TempType tempVector; if(tempData==0) { tempVector.resize(cols); tempData = tempVector.data(); } for(Index k = 0; k < size; ++k) { Index remainingRows = rows - k; Index remainingCols = cols - k - 1; RealScalar beta; mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); mat.coeffRef(k,k) = beta; // apply H to remaining part of m_qr from the left mat.bottomRightCorner(remainingRows, remainingCols) .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); } } /** \internal */ template<typename MatrixQR, typename HCoeffs, typename MatrixQRScalar = typename MatrixQR::Scalar, bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)> struct householder_qr_inplace_blocked { // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h static void run(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Index maxBlockSize=32, typename MatrixQR::Scalar* tempData = 0) { typedef typename MatrixQR::Index Index; typedef typename MatrixQR::Scalar Scalar; typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; Index rows = mat.rows(); Index cols = mat.cols(); Index size = (std::min)(rows, cols); typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; TempType tempVector; if(tempData==0) { tempVector.resize(cols); tempData = tempVector.data(); } Index blockSize = (std::min)(maxBlockSize,size); Index k = 0; for (k = 0; k < size; k += blockSize) { Index bs = (std::min)(size-k,blockSize); // actual size of the block Index tcols = cols - k - bs; // trailing columns Index brows = rows-k; // rows of the block // partition the matrix: // A00 | A01 | A02 // mat = A10 | A11 | A12 // A20 | A21 | A22 // and performs the qr dec of [A11^T A12^T]^T // and update [A21^T A22^T]^T using level 3 operations. // Finally, the algorithm continue on A22 BlockType A11_21 = mat.block(k,k,brows,bs); Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); if(tcols) { BlockType A21_22 = mat.block(k,k+bs,brows,tcols); apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); } } } }; template<typename _MatrixType, typename Rhs> struct solve_retval<HouseholderQR<_MatrixType>, Rhs> : solve_retval_base<HouseholderQR<_MatrixType>, Rhs> { EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) template<typename Dest> void evalTo(Dest& dst) const { const Index rows = dec().rows(), cols = dec().cols(); const Index rank = (std::min)(rows, cols); eigen_assert(rhs().rows() == rows); typename Rhs::PlainObject c(rhs()); // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T c.applyOnTheLeft(householderSequence( dec().matrixQR().leftCols(rank), dec().hCoeffs().head(rank)).transpose() ); dec().matrixQR() .topLeftCorner(rank, rank) .template triangularView<Upper>() .solveInPlace(c.topRows(rank)); dst.topRows(rank) = c.topRows(rank); dst.bottomRows(cols-rank).setZero(); } }; } // end namespace internal /** Performs the QR factorization of the given matrix \a matrix. The result of * the factorization is stored into \c *this, and a reference to \c *this * is returned. * * \sa class HouseholderQR, HouseholderQR(const MatrixType&) */ template<typename MatrixType> HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) { check_template_parameters(); Index rows = matrix.rows(); Index cols = matrix.cols(); Index size = (std::min)(rows,cols); m_qr = matrix; m_hCoeffs.resize(size); m_temp.resize(cols); internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data()); m_isInitialized = true; return *this; } /** \return the Householder QR decomposition of \c *this. * * \sa class HouseholderQR */ template<typename Derived> const HouseholderQR<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::householderQr() const { return HouseholderQR<PlainObject>(eval()); } } // end namespace Eigen #endif // EIGEN_QR_H