/*===================================================================== QGroundControl Open Source Ground Control Station (c) 2009, 2014 QGROUNDCONTROL PROJECT This file is part of the QGROUNDCONTROL project QGROUNDCONTROL is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. QGROUNDCONTROL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with QGROUNDCONTROL. If not, see . ======================================================================*/ /// @file /// @brief PX4 RC Calibration Widget /// @author Don Gagne #include "PX4RCCalibration.h" #include "UASManager.h" const int PX4RCCalibration::_updateInterval = 150; ///< Interval for timer which updates radio channel widgets const int PX4RCCalibration::_rcCalPWMCenterPoint = ((PX4RCCalibration::_rcCalPWMValidMaxValue - PX4RCCalibration::_rcCalPWMValidMinValue) / 2.0f) + PX4RCCalibration::_rcCalPWMValidMinValue; const int PX4RCCalibration::_rcCalPWMValidMinValue = 1300; ///< Largest valid minimum PWM Min range value const int PX4RCCalibration::_rcCalPWMValidMaxValue = 1700; ///< Smallest valid maximum PWM Max range value const int PX4RCCalibration::_rcCalPWMDefaultMinValue = 1000; ///< Default value for Min if not set const int PX4RCCalibration::_rcCalPWMDefaultMaxValue = 2000; ///< Default value for Max if not set const int PX4RCCalibration::_rcCalPWMDefaultTrimValue = PX4RCCalibration::_rcCalPWMCenterPoint; ///< Default value for Trim if not set const int PX4RCCalibration::_rcCalRoughCenterDelta = 200; ///< Delta around center point which is considered to be roughly centered const float PX4RCCalibration::_rcCalMoveDelta = 300.0f; ///< Amount of delta which is considered stick movement const float PX4RCCalibration::_rcCalMinDelta = 100.0f; ///< Amount of delta allowed around min value to consider channel at min const struct PX4RCCalibration::FunctionInfo PX4RCCalibration::_rgFunctionInfo[PX4RCCalibration::rcCalFunctionMax] = { // Name Inversion Message Parameter required { "Roll / Aileron", "Move stick left.", "RC_MAP_ROLL", true }, { "Pitch / Elevator", "Move stick down.", "RC_MAP_PITCH", true }, { "Yaw / Rudder", "Move stick left", "RC_MAP_YAW", true }, { "Throttle", "Move stick down", "RC_MAP_THROTTLE", true }, { "Main Mode Switch", NULL, "RC_MAP_MODE_SW", true }, { "Posctl switch", NULL, "RC_MAP_POSCTL_SW", false }, { "Loiter Switch", NULL, "RC_MAP_LOITER_SW", false }, { "Return Switch", NULL, "RC_MAP_RETURN_SW", false }, { "Flaps", NULL, "RC_MAP_FLAPS", false }, { "Aux1", NULL, "RC_MAP_AUX1", false }, { "Aux2", NULL, "RC_MAP_AUX2", false }, }; PX4RCCalibration::PX4RCCalibration(QWidget *parent) : QWidget(parent), _chanCount(0), _rcCalState(rcCalStateChannelWait), _mav(NULL), _paramMgr(NULL), _parameterListUpToDateSignalled(false), _ui(new Ui::PX4RCCalibration) { _ui->setupUi(this); // Initialize arrays of widget control pointers. This allows for more efficient code writing using "for" loops. for (int chan=0; chan<_chanMax; chan++) { QString radioWidgetName("radio%1Widget"); QString radioWidgetUserName("Channel %1"); RCChannelWidget* radioWidget = findChild(radioWidgetName.arg(chan+1)); Q_ASSERT(radioWidget); radioWidget->setTitle(radioWidgetUserName.arg(chan+1)); _rgRadioWidget[chan] = radioWidget; } _setActiveUAS(UASManager::instance()->getActiveUAS()); // Connect signals bool fSucceeded; Q_UNUSED(fSucceeded); fSucceeded = connect(UASManager::instance(), SIGNAL(activeUASSet(UASInterface*)), this, SLOT(_setActiveUAS(UASInterface*))); Q_ASSERT(fSucceeded); fSucceeded = connect(_ui->spektrumPairButton, SIGNAL(clicked(bool)), this, SLOT(_toggleSpektrumPairing(bool))); Q_ASSERT(fSucceeded); _updateTimer.setInterval(150); _updateTimer.start(); fSucceeded = connect(&_updateTimer, SIGNAL(timeout()), this, SLOT(_updateView())); Q_ASSERT(fSucceeded); fSucceeded= connect(_ui->rcCalCancel, SIGNAL(clicked(void)), this, SLOT(_rcCalCancel(void))); Q_ASSERT(fSucceeded); fSucceeded= connect(_ui->rcCalSkip, SIGNAL(clicked(void)), this, SLOT(_rcCalSkip(void))); Q_ASSERT(fSucceeded); fSucceeded= connect(_ui->rcCalTryAgain, SIGNAL(clicked(void)), this, SLOT(_rcCalTryAgain(void))); Q_ASSERT(fSucceeded); fSucceeded= connect(_ui->rcCalNext, SIGNAL(clicked(void)), this, SLOT(_rcCalNext(void))); Q_ASSERT(fSucceeded); _rcCalChannelWait(true); } /// @brief Resets internal calibration values to their initial state in preparation for a new calibration sequence. void PX4RCCalibration::_resetInternalCalibrationValues(void) { // Set all raw channels to not reversed and center point values for (size_t i=0; i<_chanMax; i++) { struct ChannelInfo* info = &_rgChannelInfo[i]; info->function = rcCalFunctionMax; info->reversed = false; info->rcMin = PX4RCCalibration::_rcCalPWMCenterPoint; info->rcMax = PX4RCCalibration::_rcCalPWMCenterPoint; info->rcTrim = PX4RCCalibration::_rcCalPWMCenterPoint; } // Initialize function mapping to function channel not set for (size_t i=0; ifunction = rcCalFunctionMax; } for (size_t i=0; igetDefaultComponentId(); for (int i = 0; i < _chanMax; ++i) { struct ChannelInfo* info = &_rgChannelInfo[i]; paramFound = _paramMgr->getParameterValue(componentId, trimTpl.arg(i+1), value); Q_ASSERT(paramFound); if (paramFound) { info->rcTrim = value.toInt(&convertOk); Q_ASSERT(convertOk); } paramFound = _paramMgr->getParameterValue(componentId, minTpl.arg(i+1), value); Q_ASSERT(paramFound); if (paramFound) { info->rcMin = value.toInt(&convertOk); Q_ASSERT(convertOk); } paramFound = _paramMgr->getParameterValue(componentId, maxTpl.arg(i+1), value); Q_ASSERT(paramFound); if (paramFound) { info->rcMax = value.toInt(&convertOk); Q_ASSERT(convertOk); } paramFound = _paramMgr->getParameterValue(componentId, revTpl.arg(i+1), value); Q_ASSERT(paramFound); if (paramFound) { float floatReversed = value.toFloat(&convertOk); Q_ASSERT(convertOk); Q_ASSERT(floatReversed == 1.0f || floatReversed == -1.0f); info->reversed = floatReversed == -1.0f; } } for (int i=0; igetParameterValue(componentId, _rgFunctionInfo[i].parameterName, value); Q_ASSERT(paramFound); if (paramFound) { paramChannel = value.toInt(&convertOk); Q_ASSERT(convertOk); if (paramChannel != 0) { _rgFunctionChannelMapping[i] = paramChannel - 1; _rgChannelInfo[paramChannel - 1].function = (enum rcCalFunctions)i; } } } _showMinMaxOnRadioWidgets(true); _showTrimOnRadioWidgets(true); } } /// @brief Sets a connected Spektrum receiver into bind mode void PX4RCCalibration::_toggleSpektrumPairing(bool enabled) { Q_UNUSED(enabled); if (!_ui->dsm2RadioButton->isChecked() && !_ui->dsmxRadioButton->isChecked() && !_ui->dsmx8RadioButton->isChecked()) { // Reject QMessageBox warnMsgBox; warnMsgBox.setText(tr("Please select a Spektrum Protocol Version")); warnMsgBox.setInformativeText(tr("Please select either DSM2 or DSM-X\ndirectly below the pair button,\nbased on the receiver type.")); warnMsgBox.setStandardButtons(QMessageBox::Ok); warnMsgBox.setDefaultButton(QMessageBox::Ok); (void)warnMsgBox.exec(); return; } UASInterface* mav = UASManager::instance()->getActiveUAS(); if (mav) { int rxSubType; if (_ui->dsm2RadioButton->isChecked()) rxSubType = 0; else if (_ui->dsmxRadioButton->isChecked()) rxSubType = 1; else // if (_ui->dsmx8RadioButton->isChecked()) rxSubType = 2; mav->pairRX(0, rxSubType); } } void PX4RCCalibration::_setActiveUAS(UASInterface* active) { // Disconnect old signals if (_mav) { disconnect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float))); disconnect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate())); _paramMgr = NULL; } _mav = active; if (_mav) { // Connect new signals bool fSucceeded; Q_UNUSED(fSucceeded); fSucceeded = connect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float))); Q_ASSERT(fSucceeded); _paramMgr = _mav->getParamManager(); Q_ASSERT(_paramMgr); fSucceeded = connect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate())); Q_ASSERT(fSucceeded); } setEnabled(_mav ? true : false); } /// @brief Validates the current settings against the calibration rules resetting values as necessary. void PX4RCCalibration::_validateCalibration(void) { for (int chan = 0; chan<_chanMax; chan++) { struct ChannelInfo* info = &_rgChannelInfo[chan]; if (chan < _chanCount) { // Validate Min/Max values. Although the channel appears as available we still may // not have good min/max/trim values for it. Set to defaults if needed. if (info->rcMin > _rcCalPWMValidMinValue || info->rcMax < _rcCalPWMValidMaxValue) { info->rcMin = _rcCalPWMDefaultMinValue; info->rcMax = _rcCalPWMDefaultMaxValue; info->rcTrim = _rcCalPWMDefaultTrimValue; } } else { // Unavailable channels are set to defaults info->rcMin = _rcCalPWMDefaultMinValue; info->rcMax = _rcCalPWMDefaultMaxValue; info->rcTrim = _rcCalPWMDefaultTrimValue; info->reversed = false; } } } /// @brief Saves the rc calibration values to the board parameters. /// @param trimsOnly true: write only trim values, false: write all calibration values void PX4RCCalibration::_writeCalibration(bool trimsOnly) { if (!_mav) return; _mav->endRadioControlCalibration(); _validateCalibration(); QGCUASParamManagerInterface* paramMgr = _mav->getParamManager(); Q_ASSERT(paramMgr); QString minTpl("RC%1_MIN"); QString maxTpl("RC%1_MAX"); QString trimTpl("RC%1_TRIM"); QString revTpl("RC%1_REV"); for (int chan = 0; chan<_chanMax; chan++) { struct ChannelInfo* info = &_rgChannelInfo[chan]; int oneBasedChannel = chan + 1; paramMgr->setPendingParam(0, trimTpl.arg(oneBasedChannel), info->rcTrim); if (!trimsOnly) { paramMgr->setPendingParam(0, minTpl.arg(oneBasedChannel), info->rcMin); paramMgr->setPendingParam(0, maxTpl.arg(oneBasedChannel), info->rcMax); paramMgr->setPendingParam(0, revTpl.arg(oneBasedChannel), info->reversed ? -1.0f : 1.0f); } } if (!trimsOnly) { // Write function mapping parameters for (size_t i=0; isetPendingParam(0, _rgFunctionInfo[i].parameterName, paramChannel); } } //let the param mgr manage sending all the pending RC_foo updates and persisting after paramMgr->sendPendingParameters(true, true); } /// @brief This routine is called whenever a raw value for an RC channel changes. Depending on the current /// calibration state, it will update internal values and ui accordingly. /// @param chan RC channel on which signal is coming from (0-based) /// @param fval Current value for channel void PX4RCCalibration::_remoteControlChannelRawChanged(int chan, float fval) { Q_ASSERT(chan >=0 && chan <= _chanMax); // We always update raw values _rcRawValue[chan] = fval; //qDebug() << "Raw value" << chan << fval; // Update state machine switch (_rcCalState) { case rcCalStateChannelWait: // While we are waiting detect the minimum number of RC channels if (chan + 1 > (int)_chanCount) { _chanCount = chan + 1; if (_chanCount >= _chanMinimum) { _ui->rcCalNext->setEnabled(true); _ui->rcCalStatus->setText(tr("Detected %1 radio channels.").arg(_chanCount)); } else if (_chanCount < _chanMinimum) { _ui->rcCalStatus->setText(tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum)); } } // Capture raw values so channel widgets are live _rcRawValue[chan] = fval; break; case rcCalStateIdentify: if (!_rcCalStateChannelComplete) { // If this channel is already used in a mapping we can't used it again bool channelAlreadyMapped = !(_rgChannelInfo[chan].function == rcCalFunctionMax); // If the channel moved considerably, pick it if (!channelAlreadyMapped && fabsf(_rcValueSave[chan] - fval) > _rcCalMoveDelta) { Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel < rcCalFunctionMax); _rgFunctionChannelMapping[_rcCalStateCurrentChannel] = chan; _rgChannelInfo[chan].function = (enum rcCalFunctions)_rcCalStateCurrentChannel; _updateView(); // Confirm found channel QString msg = tr("Found %1 [Channel %2]").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName).arg(chan + 1); _ui->rcCalFound->setText(msg); //qDebug() << msg; _ui->rcCalTryAgain->setEnabled(true); _ui->rcCalNext->setEnabled(true); _ui->rcCalSkip->setEnabled(false); _rcCalStateChannelComplete =true; } } break; case rcCalStateMinMax: if (fval < _rgChannelInfo[chan].rcMin && fval <= _rcCalPWMValidMinValue) { _rgRadioWidget[chan]->setMinValid(true); _rgChannelInfo[chan].rcMin = fval; } if (fval > _rgChannelInfo[chan].rcMax && fval >= _rcCalPWMValidMaxValue) { _rgRadioWidget[chan]->setMaxValid(true); _rgChannelInfo[chan].rcMax = fval; } break; case rcCalStateCenterThrottle: // If the throttle is roughly centered, enable the Next button Q_ASSERT(_rgFunctionChannelMapping[rcCalFunctionThrottle] != _chanMax); if (chan == _rgFunctionChannelMapping[rcCalFunctionThrottle] && fabsf(fval - _rcCalPWMCenterPoint) < _rcCalRoughCenterDelta) { _ui->rcCalNext->setEnabled(true); } break; case rcCalStateDetectInversion: if (!_rcCalStateChannelComplete) { // We only care about the channel we are looking for Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel < rcCalFunctionMax); if (chan == _rgFunctionChannelMapping[_rcCalStateCurrentChannel]) { // If the channel moved considerably use it to determine inversion //qDebug() << "Detect inversion" << chan << _rcValueSave[chan] << fval << _rcCalMoveDelta; if (fabsf(_rcValueSave[chan] - fval) > _rcCalMoveDelta) { // Request was made to move channel to a lower value. If value goes up the channel is reversed. bool reversed = fval > _rcValueSave[chan]; _rgChannelInfo[chan].reversed = reversed; _updateView(); // Confirm inversion detection QString msg = tr("Channel for %1 ").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName); if (reversed) { msg += tr("is reversed."); } else { msg += tr("is not reversed."); } _ui->rcCalFound->setText(msg); //qDebug() << msg; _ui->rcCalTryAgain->setEnabled(true); _ui->rcCalNext->setEnabled(true); _ui->rcCalSkip->setEnabled(false); _rcCalStateChannelComplete =true; } } } break; case rcCalStateTrims: // Update the trim values for attitude functions only if (_rgChannelInfo[chan].function >= rcCalFunctionFirstAttitudeFunction && _rgChannelInfo[chan].function <= rcCalFunctionLastAttitudeFunction) { int mappedChannel = _rgFunctionChannelMapping[_rgChannelInfo[chan].function]; // All Attitude Functions should be mapped Q_ASSERT(mappedChannel != rcCalFunctionMax); _rgChannelInfo[mappedChannel].rcTrim = _rcRawValue[mappedChannel]; } // Once the throttle is lowered we enable the next button Q_ASSERT(_rgFunctionChannelMapping[rcCalFunctionThrottle] != rcCalFunctionMax); if (chan == _rgFunctionChannelMapping[rcCalFunctionThrottle]) { bool enableNext = false; // If the value is close enough to min consider the throttle to be lowered (taking into account reversing) if ((_rgChannelInfo[chan].reversed && fabsf(_rgChannelInfo[chan].rcMax - fval) < _rcCalMinDelta) || fabsf(_rgChannelInfo[chan].rcMin - fval) < _rcCalMinDelta) { enableNext = true; } _ui->rcCalNext->setEnabled(enableNext); } break; default: // Nothing special required for state break; } } void PX4RCCalibration::_updateView() { // Update the available channels for (int chan=0; chan<_chanCount; chan++) { _rgRadioWidget[chan]->setEnabled(true); struct ChannelInfo* info = &_rgChannelInfo[chan]; _rgRadioWidget[chan]->setValueAndMinMax(_rcRawValue[chan], info->rcMin, info->rcMax); _rgRadioWidget[chan]->setTrim(info->rcTrim); } // Disable non-available channels for (int chan=_chanCount; chan<_chanMax; chan++) { _rgRadioWidget[chan]->setEnabled(false); } // Update the channel names for all channels for (int chan=0; chan<_chanMax; chan++) { struct ChannelInfo* info = &_rgChannelInfo[chan]; QString name; int oneBasedChannel = chan+1; if (info->function == rcCalFunctionMax) { name = tr("Channel %1").arg(oneBasedChannel); } else { QString label; if (info->reversed) { label = tr("%1 [Channel %2,Rev]"); } else { label = tr("%1 [Channel %2]"); } name = label.arg(_rgFunctionInfo[info->function].functionName).arg(oneBasedChannel); } _rgRadioWidget[chan]->setTitle(name); } } /// @brief Cancels the current calibration process and returns to the Channel Wait state. void PX4RCCalibration::_rcCalCancel(void) { _mav->endRadioControlCalibration(); _rcCalChannelWait(true); _setInternalCalibrationValuesFromParameters(); } void PX4RCCalibration::_rcCalSkip(void) { // Skip is only allowed for optional function mappings Q_ASSERT(_rcCalState ==rcCalStateIdentify); // This will move us to the next function mapping _rcCalNextIdentifyChannelMapping(); } /// @brief Resets the state machine such that you can retry an identify or inversion detection on a specific // function. void PX4RCCalibration::_rcCalTryAgain(void) { // FIXME: NYI for all states QMessageBox::information(this, "Not Yet Implemented", "Try Again has not yet been implemented."); } /// @brief Called when the Next button is called from the RC Calibration tab. This will either start the calibration process /// or move it on to the next step. void PX4RCCalibration::_rcCalNext(void) { switch (_rcCalState) { case rcCalStateChannelWait: _rcCalBegin(); break; case rcCalStateBegin: _rcCalStateCurrentChannel = -1; // _rcCalNextIdentifyChannelMapping will bump up to 0 to start sequence _rcCalNextIdentifyChannelMapping(); break; case rcCalStateIdentify: _rcCalNextIdentifyChannelMapping(); break; case rcCalStateMinMax: _updateView(); _rcCalCenterThrottle(); break; case rcCalStateCenterThrottle: // Setup for inversion detection channel _rcCalStateCurrentChannel = rcCalFunctionFirstAttitudeFunction - 1; // _rcCalNextDetectChannelInversion will ++ to start sequence _rcCalNextDetectChannelInversion(); break; case rcCalStateDetectInversion: _rcCalNextDetectChannelInversion(); break; case rcCalStateTrims: _rcCalSave(); break; case rcCalStateSave: _writeCalibration(false /* !trimsOnly */); _rcCalChannelWait(false); break; default: Q_ASSERT(false); break; } } /// @brief Setup for the Channel Wait state of calibration. /// @param firstTime true: this is the first time a calibration is being performed since this widget was created void PX4RCCalibration::_rcCalChannelWait(bool firstTime) { _rcCalState = rcCalStateChannelWait; if (firstTime) { _resetInternalCalibrationValues(); } else { _setInternalCalibrationValuesFromParameters(); } if (_chanCount == 0) { _ui->rcCalFound->setText(tr("Please turn on Radio")); _ui->rcCalNext->setEnabled(false); } else { if (_chanCount >= _chanMinimum) { _ui->rcCalNext->setEnabled(true); _ui->rcCalStatus->setText(tr("Detected %1 radio channels.").arg(_chanCount)); } else if (_chanCount < _chanMinimum) { _ui->rcCalNext->setEnabled(false); _ui->rcCalStatus->setText(tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum)); } } if (firstTime) { _ui->rcCalFound->clear(); } else { _ui->rcCalFound->setText(tr("Calibration complete")); } _ui->rcCalNext->setText(tr("Start")); _ui->rcCalCancel->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalTryAgain->setEnabled(false); } /// @brief Set up for the Begin state of calibration. void PX4RCCalibration::_rcCalBegin(void) { Q_ASSERT(_chanCount >= _chanMinimum); _rcCalState = rcCalStateBegin; _resetInternalCalibrationValues(); // Let the mav known we are starting calibration. This should turn off motors and so forth. // FIXME: XXX magic number: Set to 1 for radio input disable _mav->startRadioControlCalibration(1); _ui->rcCalNext->setText(tr("Next")); _ui->rcCalCancel->setEnabled(true); _ui->rcCalStatus->setText(tr("Starting RC calibration.\n\n" "Ensure RC transmitter and receiver are powered and connected. It is recommended to disconnect all motors for additional safety, however, the system is designed to not arm during the calibration.\n\n" "Reset all transmitter trims to center, then click Next to continue")); _ui->rcCalFound->clear(); } /// @brief Saves the current channel values, so that we can detect when the use moves an input. void PX4RCCalibration::_rcCalSaveCurrentValues(void) { //qDebug() << "_rcCalSaveCurrentValues"; for (unsigned i = 0; i < _chanMax; i++) { _rcValueSave[i] = _rcRawValue[i]; } } /// @brief Set up for the Identify state of calibration which assigns channels to control functions. void PX4RCCalibration::_rcCalNextIdentifyChannelMapping(void) { // Move to next channel _rcCalStateCurrentChannel++; Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel <= rcCalFunctionMax); // Be careful not to switch the state until we have a valid value in _rcCalStateCurrentChannel. Otherwise an rc signal could come through // and cause _remoteControlChannelRawChanged to get confused. _rcCalState = rcCalStateIdentify; _rcCalStateChannelComplete = false; if (_rcCalStateCurrentChannel == rcCalFunctionMax) { // If we have processed all channels move to next calibration step _rcCalReadChannelsMinMax(); return; } // Save the current mapping, so we can reset if user decides to skip _rcCalStateIdentifyOldMapping = _rgFunctionChannelMapping[_rcCalStateCurrentChannel]; // Save the current channel values so we can detect movement _rcCalSaveCurrentValues(); _ui->rcCalStatus->setText(tr("Detecting %1 ...").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName)); _ui->rcCalFound->setText(tr("Please move stick, switch or potentiometer for this channel all the way up/down or left/right.")); _ui->rcCalNext->setEnabled(false); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(!_rgFunctionInfo[_rcCalStateCurrentChannel].required); _ui->rcCalCancel->setEnabled(true); } /// @brief Sets up for the Min/Max state of calibration. void PX4RCCalibration::_rcCalReadChannelsMinMax(void) { _rcCalState = rcCalStateMinMax; _ui->rcCalStatus->setText(tr("Please move the sticks to their extreme positions, including all switches. Click Next when complete.")); _ui->rcCalFound->clear(); _ui->rcCalNext->setEnabled(true); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalCancel->setEnabled(true); _showMinMaxOnRadioWidgets(true); } /// @brief Sets up for the Center Throttle state of Calibration which is required prior to detecting channel inversions. void PX4RCCalibration::_rcCalCenterThrottle(void) { _rcCalState = rcCalStateCenterThrottle; _ui->rcCalStatus->setText(tr("Next we will be determining which channels need to be reversed.\n\n" "Please center the throttle stick prior to that. The stick should be roughly centered - the exact position is not relevant.\n" "Once centered, leave it there until asked to move it.\n\n" "Click the Next button when done. Next button will only enable when throttle is centered.")); _ui->rcCalFound->clear(); _ui->rcCalNext->setEnabled(false); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalCancel->setEnabled(true); } /// @brief Set up the Detect Channel Inversion state of calibration. void PX4RCCalibration::_rcCalNextDetectChannelInversion(void) { // Move to next channel. We only detect inversion on Attitude control functions. _rcCalStateCurrentChannel++; Q_ASSERT(_rcCalStateCurrentChannel >= rcCalFunctionFirstAttitudeFunction && _rcCalStateCurrentChannel <= rcCalFunctionLastAttitudeFunction + 1); if (_rcCalStateCurrentChannel > rcCalFunctionLastAttitudeFunction) { // If we have processed all functions move to next calibration step _rcCalTrims(); return; } // Be careful not to switch the state until we have a valid value in _rcCalStateCurrentChannel. Otherwise an rc signal could come through // and cause _remoteControlChannelRawChanged to get confused. _rcCalState = rcCalStateDetectInversion; _rcCalStateChannelComplete = false; // Save the current channel values so we can detect movement _rcCalSaveCurrentValues(); const struct FunctionInfo* info = &_rgFunctionInfo[_rcCalStateCurrentChannel]; _ui->rcCalStatus->setText(tr("Detecting reversed channels: %1 ...").arg(info->functionName)); _ui->rcCalFound->setText(info->inversionMsg); _ui->rcCalNext->setEnabled(false); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalCancel->setEnabled(true); } /// @brief Set up the Trims state of calibration. void PX4RCCalibration::_rcCalTrims(void) { _rcCalState = rcCalStateTrims; _ui->rcCalStatus->setText(tr("Next we will be determining Trim values for the two attitude control sticks:\n" "Please set the Throttle stick to the lowest throttle position and leave it there.\n" "Click the Next button to save Trims. Next button will only enable when throttle is lowered.")); _ui->rcCalFound->clear(); _ui->rcCalNext->setEnabled(false); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalCancel->setEnabled(true); _showTrimOnRadioWidgets(true); } /// @brief Set up the Save state of calibration. void PX4RCCalibration::_rcCalSave(void) { _rcCalState = rcCalStateSave; _ui->rcCalStatus->setText(tr("The current calibration settings are now displayed for each channel on screen.\n\n" "Click the Next button to upload calibration to board. Click Cancel if you don't want to save these values.")); _ui->rcCalFound->clear(); _ui->rcCalNext->setEnabled(true); _ui->rcCalTryAgain->setEnabled(false); _ui->rcCalSkip->setEnabled(false); _ui->rcCalCancel->setEnabled(true); // This updates the internal values according to the validation rules. Then _updateView will tick and update ui // such that the settings that will be written our are displayed. _validateCalibration(); _showMinMaxOnRadioWidgets(true); } /// @brief This is used by unit test code to force the calibration state machine to the specified state. /// With this you can write individual unit tests for each calibration state. Should only be called by /// unit test code. void PX4RCCalibration::_unitTestForceCalState(enum rcCalStates state) { switch (state) { case rcCalStateBegin: _rcCalBegin(); break; case rcCalStateIdentify: _rcCalStateCurrentChannel = -1; // _rcCalNextIdentifyChannelMapping will bump up to 0 to start sequence _rcCalNextIdentifyChannelMapping(); break; case rcCalStateMinMax: _rcCalReadChannelsMinMax(); break; case rcCalStateCenterThrottle: _rcCalCenterThrottle(); break; case rcCalStateDetectInversion: _rcCalStateCurrentChannel = -1; // _rcCalNextDetectChannelInversion will bump up to 0 to start sequence _rcCalNextDetectChannelInversion(); break; case rcCalStateTrims: _rcCalTrims(); break; default: // Unsupported force state Q_ASSERT(false); break; } } /// @brief Shows or hides the min/max values of the channel widgets. /// @param show true: show the min/max values, false: hide the min/max values void PX4RCCalibration::_showMinMaxOnRadioWidgets(bool show) { // Force a view update to widget have current values _updateView(); // Turn on min/max display for all radio widgets for (int i=0; i<_chanMax; i++) { RCChannelWidget* radioWidget = _rgRadioWidget[i]; Q_ASSERT(radioWidget); radioWidget->showMinMax(show); if (show) { if (radioWidget->min() <= _rcCalPWMValidMinValue) { radioWidget->setMinValid(true); } if (radioWidget->max() >= _rcCalPWMValidMaxValue) { radioWidget->setMaxValid(true); } } else { radioWidget->setMinValid(false); radioWidget->setMaxValid(false); } } } /// @brief Shows or hides the trim values of the channel widgets. /// @param show true: show the trim values, false: hide the trim values void PX4RCCalibration::_showTrimOnRadioWidgets(bool show) { // Turn on trim display for all radio widgets for (int i=0; i<_chanMax; i++) { RCChannelWidget* radioWidget = _rgRadioWidget[i]; Q_ASSERT(radioWidget); radioWidget->showTrim(show); } } void PX4RCCalibration::_parameterListUpToDate(void) { _parameterListUpToDateSignalled = true; if (_rcCalState == rcCalStateChannelWait) { _setInternalCalibrationValuesFromParameters(); } }