/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_spline.h"
#include "qwt_math.h"

class QwtSpline::PrivateData
{
public:
    PrivateData():
        splineType( QwtSpline::Natural )
    {
    }

    QwtSpline::SplineType splineType;

    // coefficient vectors
    QVector<double> a;
    QVector<double> b;
    QVector<double> c;

    // control points
    QPolygonF points;
};

static int lookup( double x, const QPolygonF &values )
{
#if 0
//qLowerBound/qHigherBound ???
#endif
    int i1;
    const int size = values.size();

    if ( x <= values[0].x() )
        i1 = 0;
    else if ( x >= values[size - 2].x() )
        i1 = size - 2;
    else
    {
        i1 = 0;
        int i2 = size - 2;
        int i3 = 0;

        while ( i2 - i1 > 1 )
        {
            i3 = i1 + ( ( i2 - i1 ) >> 1 );

            if ( values[i3].x() > x )
                i2 = i3;
            else
                i1 = i3;
        }
    }
    return i1;
}

//! Constructor
QwtSpline::QwtSpline()
{
    d_data = new PrivateData;
}

/*!
   Copy constructor
   \param other Spline used for initialization
*/
QwtSpline::QwtSpline( const QwtSpline& other )
{
    d_data = new PrivateData( *other.d_data );
}

/*!
   Assignment operator
   \param other Spline used for initialization
   \return *this
*/
QwtSpline &QwtSpline::operator=( const QwtSpline & other )
{
    *d_data = *other.d_data;
    return *this;
}

//! Destructor
QwtSpline::~QwtSpline()
{
    delete d_data;
}

/*!
   Select the algorithm used for calculating the spline

   \param splineType Spline type
   \sa splineType()
*/
void QwtSpline::setSplineType( SplineType splineType )
{
    d_data->splineType = splineType;
}

/*!
   \return the spline type
   \sa setSplineType()
*/
QwtSpline::SplineType QwtSpline::splineType() const
{
    return d_data->splineType;
}

/*!
  \brief Calculate the spline coefficients

  Depending on the value of \a periodic, this function
  will determine the coefficients for a natural or a periodic
  spline and store them internally.

  \param points Points
  \return true if successful
  \warning The sequence of x (but not y) values has to be strictly monotone
           increasing, which means <code>points[i].x() < points[i+1].x()</code>.
       If this is not the case, the function will return false
*/
bool QwtSpline::setPoints( const QPolygonF& points )
{
    const int size = points.size();
    if ( size <= 2 )
    {
        reset();
        return false;
    }

    d_data->points = points;

    d_data->a.resize( size - 1 );
    d_data->b.resize( size - 1 );
    d_data->c.resize( size - 1 );

    bool ok;
    if ( d_data->splineType == Periodic )
        ok = buildPeriodicSpline( points );
    else
        ok = buildNaturalSpline( points );

    if ( !ok )
        reset();

    return ok;
}

/*!
   \return Points, that have been by setPoints()
*/
QPolygonF QwtSpline::points() const
{
    return d_data->points;
}

//! \return A coefficients
const QVector<double> &QwtSpline::coefficientsA() const
{
    return d_data->a;
}

//! \return B coefficients
const QVector<double> &QwtSpline::coefficientsB() const
{
    return d_data->b;
}

//! \return C coefficients
const QVector<double> &QwtSpline::coefficientsC() const
{
    return d_data->c;
}


//! Free allocated memory and set size to 0
void QwtSpline::reset()
{
    d_data->a.resize( 0 );
    d_data->b.resize( 0 );
    d_data->c.resize( 0 );
    d_data->points.resize( 0 );
}

//! True if valid
bool QwtSpline::isValid() const
{
    return d_data->a.size() > 0;
}

/*!
  Calculate the interpolated function value corresponding
  to a given argument x.

  \param x Coordinate
  \return Interpolated coordinate
*/
double QwtSpline::value( double x ) const
{
    if ( d_data->a.size() == 0 )
        return 0.0;

    const int i = lookup( x, d_data->points );

    const double delta = x - d_data->points[i].x();
    return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
        * delta + d_data->c[i] ) * delta + d_data->points[i].y() );
}

/*!
  \brief Determines the coefficients for a natural spline
  \return true if successful
*/
bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
{
    int i;

    const QPointF *p = points.data();
    const int size = points.size();

    double *a = d_data->a.data();
    double *b = d_data->b.data();
    double *c = d_data->c.data();

    //  set up tridiagonal equation system; use coefficient
    //  vectors as temporary buffers
    QVector<double> h( size - 1 );
    for ( i = 0; i < size - 1; i++ )
    {
        h[i] = p[i+1].x() - p[i].x();
        if ( h[i] <= 0 )
            return false;
    }

    QVector<double> d( size - 1 );
    double dy1 = ( p[1].y() - p[0].y() ) / h[0];
    for ( i = 1; i < size - 1; i++ )
    {
        b[i] = c[i] = h[i];
        a[i] = 2.0 * ( h[i-1] + h[i] );

        const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
        d[i] = 6.0 * ( dy1 - dy2 );
        dy1 = dy2;
    }

    //
    // solve it
    //

    // L-U Factorization
    for ( i = 1; i < size - 2; i++ )
    {
        c[i] /= a[i];
        a[i+1] -= b[i] * c[i];
    }

    // forward elimination
    QVector<double> s( size );
    s[1] = d[1];
    for ( i = 2; i < size - 1; i++ )
        s[i] = d[i] - c[i-1] * s[i-1];

    // backward elimination
    s[size - 2] = - s[size - 2] / a[size - 2];
    for ( i = size - 3; i > 0; i-- )
        s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
    s[size - 1] = s[0] = 0.0;

    //
    // Finally, determine the spline coefficients
    //
    for ( i = 0; i < size - 1; i++ )
    {
        a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
        b[i] = 0.5 * s[i];
        c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
            - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
    }

    return true;
}

/*!
  \brief Determines the coefficients for a periodic spline
  \return true if successful
*/
bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
{
    int i;

    const QPointF *p = points.data();
    const int size = points.size();

    double *a = d_data->a.data();
    double *b = d_data->b.data();
    double *c = d_data->c.data();

    QVector<double> d( size - 1 );
    QVector<double> h( size - 1 );
    QVector<double> s( size );

    //
    //  setup equation system; use coefficient
    //  vectors as temporary buffers
    //
    for ( i = 0; i < size - 1; i++ )
    {
        h[i] = p[i+1].x() - p[i].x();
        if ( h[i] <= 0.0 )
            return false;
    }

    const int imax = size - 2;
    double htmp = h[imax];
    double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
    for ( i = 0; i <= imax; i++ )
    {
        b[i] = c[i] = h[i];
        a[i] = 2.0 * ( htmp + h[i] );
        const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
        d[i] = 6.0 * ( dy1 - dy2 );
        dy1 = dy2;
        htmp = h[i];
    }

    //
    // solve it
    //

    // L-U Factorization
    a[0] = qSqrt( a[0] );
    c[0] = h[imax] / a[0];
    double sum = 0;

    for ( i = 0; i < imax - 1; i++ )
    {
        b[i] /= a[i];
        if ( i > 0 )
            c[i] = - c[i-1] * b[i-1] / a[i];
        a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
        sum += qwtSqr( c[i] );
    }
    b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
    a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );


    // forward elimination
    s[0] = d[0] / a[0];
    sum = 0;
    for ( i = 1; i < imax; i++ )
    {
        s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
        sum += c[i-1] * s[i-1];
    }
    s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];


    // backward elimination
    s[imax] = - s[imax] / a[imax];
    s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
    for ( i = imax - 2; i >= 0; i-- )
        s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];

    //
    // Finally, determine the spline coefficients
    //
    s[size-1] = s[0];
    for ( i = 0; i < size - 1; i++ )
    {
        a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
        b[i] = 0.5 * s[i];
        c[i] = ( p[i+1].y() - p[i].y() )
            / h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
    }

    return true;
}