#include #include #include "geometry.h" #include #include #include #include #include #include #include "clipper/clipper.hpp" #define CLIPPER_SCALE 1000000 #ifndef NDEBUG //#define SNAKE_SHOW_TIME #endif namespace bg = boost::geometry; namespace trans = bg::strategy::transform; BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian) namespace geometry { static const IntType stdScale = 1000000; //========================================================================= // Geometry stuff. //========================================================================= void polygonCenter(const FPolygon &polygon, FPoint ¢er) { using namespace mapbox; if (polygon.outer().empty()) return; mapbox::geometry::polygon p; mapbox::geometry::linear_ring lr1; for (size_t i = 0; i < polygon.outer().size(); ++i) { mapbox::geometry::point vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>()); lr1.push_back(vertex); } p.push_back(lr1); mapbox::geometry::point c = polylabel(p); center.set<0>(c.x); center.set<1>(c.y); } bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox) { /* Find the minimum-area bounding box of a set of 2D points The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates. The first and last points points must be the same, making a closed polygon. This program finds the rotation angles of each edge of the convex polygon, then tests the area of a bounding box aligned with the unique angles in 90 degrees of the 1st Quadrant. Returns the Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version) Results verified using Matlab Copyright (c) 2013, David Butterworth, University of Queensland All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Willow Garage, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ if (polygon.outer().empty() || polygon.outer().size() < 3) return false; FPolygon convex_hull; bg::convex_hull(polygon, convex_hull); // cout << "Convex hull: " << bg::wkt(convex_hull) << endl; //# Compute edges (x2-x1,y2-y1) std::vector edges; const auto &convex_hull_outer = convex_hull.outer(); for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) { FPoint p1 = convex_hull_outer.at(i); FPoint p2 = convex_hull_outer.at(i + 1); double edge_x = p2.get<0>() - p1.get<0>(); double edge_y = p2.get<1>() - p1.get<1>(); edges.push_back(FPoint{edge_x, edge_y}); } // cout << "Edges: "; // for (auto e : edges) // cout << e.get<0>() << " " << e.get<1>() << ","; // cout << endl; // Calculate unique edge angles atan2(y/x) double angle_scale = 1e3; std::set angles_long; for (auto vertex : edges) { double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2); angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers angles_long.insert(long(round(angle * angle_scale))); } std::vector edge_angles; for (auto a : angles_long) edge_angles.push_back(double(a) / angle_scale); // cout << "Unique angles: "; // for (auto e : edge_angles) // cout << e*180/M_PI << ","; // cout << endl; double min_area = std::numeric_limits::infinity(); // Test each angle to find bounding box with smallest area // print "Testing", len(edge_angles), "possible rotations for bounding box... // \n" for (double angle : edge_angles) { trans::rotate_transformer rotate(angle * 180 / M_PI); FPolygon hull_rotated; bg::transform(convex_hull, hull_rotated, rotate); // cout << "Convex hull rotated: " << bg::wkt(hull_rotated) // << endl; bg::model::box box; bg::envelope(hull_rotated, box); // cout << "Bounding box: " << // bg::wkt>(box) << endl; //# print "Rotated hull points are \n", rot_points FPoint min_corner = box.min_corner(); FPoint max_corner = box.max_corner(); double min_x = min_corner.get<0>(); double max_x = max_corner.get<0>(); double min_y = min_corner.get<1>(); double max_y = max_corner.get<1>(); // cout << "min_x: " << min_x << endl; // cout << "max_x: " << max_x << endl; // cout << "min_y: " << min_y << endl; // cout << "max_y: " << max_y << endl; // Calculate height/width/area of this bounding rectangle double width = max_x - min_x; double height = max_y - min_y; double area = width * height; // cout << "Width: " << width << endl; // cout << "Height: " << height << endl; // cout << "area: " << area << endl; // cout << "angle: " << angle*180/M_PI << endl; // Store the smallest rect found first (a simple convex hull might have 2 // answers with same area) if (area < min_area) { min_area = area; minBBox.angle = angle; minBBox.width = width; minBBox.height = height; minBBox.corners.clear(); minBBox.corners.outer().push_back(FPoint{min_x, min_y}); minBBox.corners.outer().push_back(FPoint{min_x, max_y}); minBBox.corners.outer().push_back(FPoint{max_x, max_y}); minBBox.corners.outer().push_back(FPoint{max_x, min_y}); minBBox.corners.outer().push_back(FPoint{min_x, min_y}); } // cout << endl << endl; } // Transform corners of minimal bounding box. trans::rotate_transformer rotate(-minBBox.angle * 180 / M_PI); FPolygon rotated_polygon; bg::transform(minBBox.corners, rotated_polygon, rotate); minBBox.corners = rotated_polygon; return true; } void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset, double offset) { bg::strategy::buffer::distance_symmetric distance_strategy(offset); bg::strategy::buffer::join_miter join_strategy(3); bg::strategy::buffer::end_flat end_strategy; bg::strategy::buffer::point_square point_strategy; bg::strategy::buffer::side_straight side_strategy; bg::model::multi_polygon result; bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy); if (result.size() > 0) polygonOffset = result[0]; } void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices, Matrix &graph) { size_t n = graph.n(); for (size_t i = 0; i < n; ++i) { FPoint v1 = vertices[i]; for (size_t j = i + 1; j < n; ++j) { FPoint v2 = vertices[j]; FLineString path{v1, v2}; double distance = 0; if (!bg::within(path, polygon)) distance = std::numeric_limits::infinity(); else distance = bg::length(path); graph(i, j) = distance; graph(j, i) = distance; } } } bool toDistanceMatrix(Matrix &graph) { size_t n = graph.n(); auto distance = [&graph](size_t i, size_t j) -> double { return graph(i, j); }; for (size_t i = 0; i < n; ++i) { for (size_t j = i + 1; j < n; ++j) { double d = graph(i, j); if (!std::isinf(d)) continue; std::vector path; if (!dijkstraAlgorithm(n, i, j, path, d, distance)) { return false; } // cout << "(" << i << "," << j << ") d: " << d << endl; // cout << "Path size: " << path.size() << endl; // for (auto idx : path) // cout << idx << " "; // cout << endl; graph(i, j) = d; graph(j, i) = d; } } return true; } bool joinedArea(const FPolygon &mArea, const FPolygon &sArea, const FPolygon &corridor, FPolygon &jArea, std::string &errorString) { // Measurement area and service area overlapping? bool overlapingSerMeas = bg::intersects(mArea, sArea) ? true : false; bool corridorValid = corridor.outer().size() > 0 ? true : false; // Check if corridor is connecting measurement area and service area. bool corridor_is_connection = false; if (corridorValid) { // Corridor overlaping with measurement area? if (bg::intersects(corridor, mArea)) { // Corridor overlaping with service area? if (bg::intersects(corridor, sArea)) { corridor_is_connection = true; } } } // Are areas joinable? std::deque sol; FPolygon partialArea = mArea; if (overlapingSerMeas) { if (corridor_is_connection) { bg::union_(partialArea, corridor, sol); } } else if (corridor_is_connection) { bg::union_(partialArea, corridor, sol); } else { std::stringstream ss; auto printPoint = [&ss](const FPoint &p) { ss << " (" << p.get<0>() << ", " << p.get<1>() << ")"; }; ss << "Areas are not overlapping." << std::endl; ss << "Measurement area:"; bg::for_each_point(mArea, printPoint); ss << std::endl; ss << "Service area:"; bg::for_each_point(sArea, printPoint); ss << std::endl; ss << "Corridor:"; bg::for_each_point(corridor, printPoint); ss << std::endl; errorString = ss.str(); return false; } if (sol.size() > 0) { partialArea = sol[0]; sol.clear(); } // Join areas. bg::union_(partialArea, sArea, sol); if (sol.size() > 0) { jArea = sol[0]; } else { std::stringstream ss; auto printPoint = [&ss](const FPoint &p) { ss << " (" << p.get<0>() << ", " << p.get<1>() << ")"; }; ss << "Areas not joinable." << std::endl; ss << "Measurement area:"; bg::for_each_point(mArea, printPoint); ss << std::endl; ss << "Service area:"; bg::for_each_point(sArea, printPoint); ss << std::endl; ss << "Corridor:"; bg::for_each_point(corridor, printPoint); ss << std::endl; errorString = ss.str(); return false; } return true; } bool joinedArea(const std::vector &areas, FPolygon &joinedArea) { if (areas.size() < 1) return false; joinedArea = *areas[0]; std::deque idxList; for (size_t i = 1; i < areas.size(); ++i) idxList.push_back(i); std::deque sol; while (idxList.size() > 0) { bool success = false; for (auto it = idxList.begin(); it != idxList.end(); ++it) { bg::union_(joinedArea, *areas[*it], sol); if (sol.size() > 0) { joinedArea = sol[0]; sol.clear(); idxList.erase(it); success = true; break; } } if (!success) return false; } return true; } BoundingBox::BoundingBox() : width(0), height(0), angle(0) {} void BoundingBox::clear() { width = 0; height = 0; angle = 0; corners.clear(); } FPoint int2Float(const IPoint &ip) { return int2Float(ip, stdScale); } FPoint int2Float(const IPoint &ip, IntType scale) { return FPoint{FloatType(ip.get<0>()) / scale, FloatType(ip.get<1>()) / scale}; } IPoint float2Int(const FPoint &ip) { return float2Int(ip, stdScale); } IPoint float2Int(const FPoint &ip, IntType scale) { return IPoint{IntType(std::llround(ip.get<0>() * scale)), IntType(std::llround(ip.get<1>() * scale))}; } bool dijkstraAlgorithm(size_t numElements, size_t startIndex, size_t endIndex, std::vector &elementPath, double &length, std::function distanceDij) { if (startIndex >= numElements || endIndex >= numElements) { length = std::numeric_limits::infinity(); return false; } else if (endIndex == startIndex) { length = 0; elementPath.push_back(startIndex); return true; } // Node struct // predecessorIndex is the index of the predecessor node // (nodeList[predecessorIndex]) distance is the distance between the node and // the start node node number is stored by the position in nodeList struct Node { std::size_t predecessorIndex = std::numeric_limits::max(); double distance = std::numeric_limits::infinity(); }; // The list with all Nodes (elements) std::vector nodeList(numElements); // This list will be initalized with indices referring to the elements of // nodeList. Elements will be successively remove during the execution of the // Dijkstra Algorithm. std::vector workingSet(numElements); // append elements to node list for (size_t i = 0; i < numElements; ++i) workingSet[i] = i; nodeList[startIndex].distance = 0; // Dijkstra Algorithm // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus while (workingSet.size() > 0) { // serach Node with minimal distance auto minDist = std::numeric_limits::infinity(); std::size_t minDistIndex_WS = std::numeric_limits::max(); // WS = workinSet for (size_t i = 0; i < workingSet.size(); ++i) { const auto nodeIndex = workingSet.at(i); const auto dist = nodeList.at(nodeIndex).distance; if (dist < minDist) { minDist = dist; minDistIndex_WS = i; } } if (minDistIndex_WS == std::numeric_limits::max()) return false; size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList workingSet.erase(workingSet.begin() + minDistIndex_WS); if (indexU_NL == endIndex) // shortest path found break; const auto distanceU = nodeList.at(indexU_NL).distance; // update distance for (size_t i = 0; i < workingSet.size(); ++i) { auto indexV_NL = workingSet[i]; // NL = nodeList Node *v = &nodeList[indexV_NL]; auto dist = distanceDij(indexU_NL, indexV_NL); // is ther an alternative path which is shorter? auto alternative = distanceU + dist; if (alternative < v->distance) { v->distance = alternative; v->predecessorIndex = indexU_NL; } } } // end Djikstra Algorithm // reverse assemble path auto e = endIndex; length = nodeList[e].distance; while (true) { if (e == std::numeric_limits::max()) { if (elementPath.size() > 0 && elementPath[0] == startIndex) { // check if starting point was reached break; } else { // some error length = std::numeric_limits::infinity(); elementPath.clear(); return false; } } else { elementPath.insert(elementPath.begin(), e); // Update Node e = nodeList[e].predecessorIndex; } } return true; } bool shortestPathFromGraph(const Matrix &graph, const size_t startIndex, const size_t endIndex, std::vector &pathIdx) { if (!std::isinf(graph(startIndex, endIndex))) { pathIdx.push_back(startIndex); pathIdx.push_back(endIndex); } else { auto distance = [&graph](size_t i, size_t j) -> double { return graph(i, j); }; double d = 0; if (!dijkstraAlgorithm(graph.n(), startIndex, endIndex, pathIdx, d, distance)) { return false; } } return true; } } // namespace geometry bool boost::geometry::model::operator==(::geometry::FPoint &p1, ::geometry::FPoint &p2) { return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>()); } bool boost::geometry::model::operator!=(::geometry::FPoint &p1, ::geometry::FPoint &p2) { return !(p1 == p2); } bool boost::geometry::model::operator==(::geometry::IPoint &p1, ::geometry::IPoint &p2) { return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>()); } bool boost::geometry::model::operator!=(::geometry::IPoint &p1, ::geometry::IPoint &p2) { return !(p1 == p2); }