// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Integer programming example that shows how to use the API. #include "ortools/base/commandlineflags.h" #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void RunIntegerProgrammingExample( const std::string& optimization_problem_type) { LOG(INFO) << "---- Integer programming example with " << optimization_problem_type << " ----"; if (!MPSolver::ParseAndCheckSupportForProblemType( optimization_problem_type)) { LOG(INFO) << " support for solver not linked in."; return; } MPSolver solver("IntegerProgrammingExample", MPSolver::ParseSolverTypeOrDie(optimization_problem_type)); const double infinity = solver.infinity(); // x and y are integer non-negative variables. MPVariable* const x = solver.MakeIntVar(0.0, infinity, "x"); MPVariable* const y = solver.MakeIntVar(0.0, infinity, "y"); // Maximize x + 10 * y. MPObjective* const objective = solver.MutableObjective(); objective->SetCoefficient(x, 1); objective->SetCoefficient(y, 10); objective->SetMaximization(); // x + 7 * y <= 17.5. MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 17.5); c0->SetCoefficient(x, 1); c0->SetCoefficient(y, 7); // x <= 3.5 MPConstraint* const c1 = solver.MakeRowConstraint(-infinity, 3.5); c1->SetCoefficient(x, 1); c1->SetCoefficient(y, 0); LOG(INFO) << "Number of variables = " << solver.NumVariables(); LOG(INFO) << "Number of constraints = " << solver.NumConstraints(); const MPSolver::ResultStatus result_status = solver.Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution!"; } LOG(INFO) << "Solution:"; LOG(INFO) << "x = " << x->solution_value(); LOG(INFO) << "y = " << y->solution_value(); LOG(INFO) << "Optimal objective value = " << objective->Value(); LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << solver.wall_time() << " milliseconds"; LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations"; LOG(INFO) << "Problem solved in " << solver.nodes() << " branch-and-bound nodes"; } void RunAllExamples() { RunIntegerProgrammingExample("CBC"); RunIntegerProgrammingExample("SAT"); RunIntegerProgrammingExample("SCIP"); RunIntegerProgrammingExample("GUROBI"); RunIntegerProgrammingExample("GLPK"); RunIntegerProgrammingExample("CPLEX"); RunIntegerProgrammingExample("XPRESS"); } } // namespace operations_research int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); absl::SetFlag(&FLAGS_logtostderr, true); absl::SetFlag(&FLAGS_log_prefix, false); gflags::ParseCommandLineFlags(&argc, &argv, true); operations_research::RunAllExamples(); return 0; }