// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Linear programming example that shows how to use the API. #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" #include "ortools/linear_solver/linear_solver.pb.h" namespace operations_research { void RunLinearProgrammingExample() { MPSolver solver("LinearProgrammingExample", MPSolver::GLOP_LINEAR_PROGRAMMING); const double infinity = solver.infinity(); // x and y are continuous non-negative variables. MPVariable* const x = solver.MakeNumVar(0.0, infinity, "x"); MPVariable* const y = solver.MakeNumVar(0.0, infinity, "y"); // Objectif function: Maximize 3x + 4y. MPObjective* const objective = solver.MutableObjective(); objective->SetCoefficient(x, 3); objective->SetCoefficient(y, 4); objective->SetMaximization(); // x + 2y <= 14. MPConstraint* const c0 = solver.MakeRowConstraint(-infinity, 14.0); c0->SetCoefficient(x, 1); c0->SetCoefficient(y, 2); // 3x - y >= 0. MPConstraint* const c1 = solver.MakeRowConstraint(0.0, infinity); c1->SetCoefficient(x, 3); c1->SetCoefficient(y, -1); // x - y <= 2. MPConstraint* const c2 = solver.MakeRowConstraint(-infinity, 2.0); c2->SetCoefficient(x, 1); c2->SetCoefficient(y, -1); LOG(INFO) << "Number of variables = " << solver.NumVariables(); LOG(INFO) << "Number of constraints = " << solver.NumConstraints(); const MPSolver::ResultStatus result_status = solver.Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution!"; } LOG(INFO) << "Solution:"; LOG(INFO) << "x = " << x->solution_value(); LOG(INFO) << "y = " << y->solution_value(); LOG(INFO) << "Optimal objective value = " << objective->Value(); LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << solver.wall_time() << " milliseconds"; LOG(INFO) << "Problem solved in " << solver.iterations() << " iterations"; LOG(INFO) << "x: reduced cost = " << x->reduced_cost(); LOG(INFO) << "y: reduced cost = " << y->reduced_cost(); const std::vector activities = solver.ComputeConstraintActivities(); LOG(INFO) << "c0: dual value = " << c0->dual_value() << " activity = " << activities[c0->index()]; LOG(INFO) << "c1: dual value = " << c1->dual_value() << " activity = " << activities[c1->index()]; LOG(INFO) << "c2: dual value = " << c2->dual_value() << " activity = " << activities[c2->index()]; } } // namespace operations_research int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); FLAGS_logtostderr = 1; operations_research::RunLinearProgrammingExample(); return EXIT_SUCCESS; }