// Copyright 2010-2018 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef OR_TOOLS_SAT_FEASIBILITY_PUMP_H_ #define OR_TOOLS_SAT_FEASIBILITY_PUMP_H_ #include "ortools/glop/revised_simplex.h" #include "ortools/lp_data/lp_data.h" #include "ortools/lp_data/lp_data_utils.h" #include "ortools/lp_data/lp_types.h" #include "ortools/sat/cp_model_loader.h" #include "ortools/sat/integer.h" #include "ortools/sat/linear_constraint.h" #include "ortools/sat/synchronization.h" #include "ortools/sat/util.h" namespace operations_research { namespace sat { class FeasibilityPump { public: explicit FeasibilityPump(Model* model); ~FeasibilityPump(); typedef glop::RowIndex ConstraintIndex; void SetMaxFPIterations(int max_iter) { max_fp_iterations_ = std::max(1, max_iter); } // Add a new linear constraint to this LP. void AddLinearConstraint(const LinearConstraint& ct); // Set the coefficient of the variable in the objective. Calling it twice will // overwrite the previous value. Note that this doesn't set the objective // coefficient if the variable doesn't appear in any constraints. So this has // to be called after all the constraints are added. void SetObjectiveCoefficient(IntegerVariable ivar, IntegerValue coeff); // Returns the LP value of a variable in the current // solution. These functions should only be called when HasSolution() is true. bool HasLPSolution() const { return lp_solution_is_set_; } double LPSolutionObjectiveValue() const { return lp_objective_; } double GetLPSolutionValue(IntegerVariable variable) const; bool LPSolutionIsInteger() const { return lp_solution_is_integer_; } double LPSolutionFractionality() const { return lp_solution_fractionality_; } // Returns the Integer solution value of a variable in the current rounded // solution. These functions should only be called when HasIntegerSolution() // is true. bool HasIntegerSolution() const { return integer_solution_is_set_; } int64 IntegerSolutionObjectiveValue() const { return integer_solution_objective_; } bool IntegerSolutionIsFeasible() const { return integer_solution_is_feasible_; } int64 GetIntegerSolutionValue(IntegerVariable variable) const; void Solve(); private: // Solve the LP, returns false if something went wrong in the LP solver. bool SolveLp(); // Calls the specified rounding method in the parameters. void Round(); // Round the fractional LP solution values to nearest integer values. void NearestIntegerRounding(); // Counts the number of up and down locks as defined below. // #up_locks = #upper bounded constraints with positive coeff for var // + #lower bounded constraints with negative coeff for var. // #down_locks = #lower bounded constraints with positive coeff for var // + #upper bounded constraints with negative coeff for var. // Rounds the variable in the direction of lesser locks. When the // fractionality is low (less than 0.1), this reverts to nearest integer // rounding to avoid rounding almost integer values in wrong direction. void LockBasedRounding(); void FillIntegerSolutionStats(); // Loads the lp_data_. void InitializeWorkingLP(); // Changes the LP objective and bounds of the norm constraints so the new // objective also tries to minimize the distance to the rounded solution. void L1DistanceMinimize(); // Stores the solutions in the shared repository. Stores LP solution if it is // integer and stores the integer solution if it is feasible. void MaybePushToRepo(); void PrintStats(); // Returns the variable value on the same scale as the CP variable value. double GetVariableValueAtCpScale(glop::ColIndex var); // Shortcut for an integer linear expression type. using LinearExpression = std::vector>; // Gets or creates an LP variable that mirrors a model variable. // The variable should be a positive reference. glop::ColIndex GetOrCreateMirrorVariable(IntegerVariable positive_variable); // Updates the bounds of the LP variables from the CP bounds. void UpdateBoundsOfLpVariables(); // This epsilon is related to the precision of the value returned by the LP // once they have been scaled back into the CP domain. So for large domain or // cost coefficient, we may have some issues. static const double kCpEpsilon; // Initial problem in integer form. // We always sort the inner vectors by increasing glop::ColIndex. struct LinearConstraintInternal { IntegerValue lb; IntegerValue ub; LinearExpression terms; }; LinearExpression integer_objective_; IntegerValue objective_infinity_norm_ = IntegerValue(0); double objective_normalization_factor_ = 0.0; double mixing_factor_ = 1.0; gtl::ITIVector integer_lp_; int model_vars_size_ = 0; // Underlying LP solver API. glop::LinearProgram lp_data_; glop::RevisedSimplex simplex_; glop::ColMapping norm_variables_; glop::ColToRowMapping norm_lhs_constraints_; glop::ColToRowMapping norm_rhs_constraints_; // For the scaling. glop::LpScalingHelper scaler_; // Structures used for mirroring IntegerVariables inside the underlying LP // solver: an integer variable var is mirrored by mirror_lp_variable_[var]. // Note that these indices are dense in [0, mirror_lp_variable_.size()] so // they can be used as vector indices. std::vector integer_variables_; absl::flat_hash_map mirror_lp_variable_; // True if the variable was binary before we apply scaling. std::vector var_is_binary_; // True if variable has more number of constraints restricting it to take // higher values than number of constraints restricting it to take lower // values. std::vector var_has_more_up_locks_; // We need to remember what to optimize if an objective is given, because // then we will switch the objective between feasibility and optimization. bool objective_is_defined_ = false; // Singletons from Model. const SatParameters& sat_parameters_; TimeLimit* time_limit_; IntegerTrail* integer_trail_; Trail* trail_; IntegerEncoder* integer_encoder_; SharedIncompleteSolutionManager* incomplete_solutions_; const CpModelMapping* mapping_; // Last OPTIMAL/Feasible solution found by a call to the underlying LP solver. bool lp_solution_is_set_ = false; bool lp_solution_is_integer_ = false; double lp_objective_; std::vector lp_solution_; std::vector best_lp_solution_; // We use max fractionality of all variables. double lp_solution_fractionality_; // Rounded Integer solution. This might not be feasible. bool integer_solution_is_set_ = false; bool integer_solution_is_feasible_ = false; int64 integer_solution_objective_; std::vector integer_solution_; std::vector best_integer_solution_; int num_infeasible_constraints_; // We use max infeasibility of all constraints. int64 integer_solution_infeasibility_; // Sum of all simplex iterations performed by this class. This is useful to // test the incrementality and compare to other solvers. int64 total_num_simplex_iterations_ = 0; // TODO(user): Tune default value. Expose as parameter. int max_fp_iterations_ = 20; }; } // namespace sat } // namespace operations_research #endif // OR_TOOLS_SAT_FEASIBILITY_PUMP_H_