/* -*- mode: C++ ; c-file-style: "stroustrup" -*- ***************************** * Qwt Widget Library * Copyright (C) 1997 Josef Wilgen * Copyright (C) 2002 Uwe Rathmann * * This library is free software; you can redistribute it and/or * modify it under the terms of the Qwt License, Version 1.0 *****************************************************************************/ #include "qwt_point_mapper.h" #include "qwt_scale_map.h" #include "qwt_pixel_matrix.h" #include <qpolygon.h> #include <qimage.h> #include <qpen.h> #include <qpainter.h> #if QT_VERSION >= 0x040400 #include <qthread.h> #include <qfuture.h> #include <qtconcurrentrun.h> #if !defined(QT_NO_QFUTURE) #define QWT_USE_THREADS 0 #endif #endif static QRectF qwtInvalidRect( 0.0, 0.0, -1.0, -1.0 ); // Helper class to work around the 5 parameters // limitation of QtConcurrent::run() class QwtDotsCommand { public: const QwtSeriesData<QPointF> *series; int from; int to; QRgb rgb; }; static void qwtRenderDots( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtDotsCommand command, const QPoint &pos, QImage *image ) { const QRgb rgb = command.rgb; QRgb *bits = reinterpret_cast<QRgb *>( image->bits() ); const int w = image->width(); const int h = image->height(); const int x0 = pos.x(); const int y0 = pos.y(); for ( int i = command.from; i <= command.to; i++ ) { const QPointF sample = command.series->sample( i ); const int x = static_cast<int>( xMap.transform( sample.x() ) + 0.5 ) - x0; const int y = static_cast<int>( yMap.transform( sample.y() ) + 0.5 ) - y0; if ( x >= 0 && x < w && y >= 0 && y < h ) bits[ y * w + x ] = rgb; } } static inline int qwtRoundValue( double value ) { #if 1 return qRound( value ); #else // A little bit faster, but differs from qRound() // for negative values. Should be no problem as we are // rounding widgets coordinates, where negative values // are clipped off anyway ( at least when there is no // painter transformation ) return static_cast<int>( value + 0.5 ); #endif } // some functors, so that the compile can inline struct QwtRoundI { inline int operator()( double value ) { return qwtRoundValue( value ); } }; struct QwtRoundF { inline double operator()( double value ) { return static_cast<double>( qwtRoundValue( value ) ); } }; struct QwtNoRoundF { inline double operator()( double value ) { return value; } }; // mapping points without any filtering - beside checking // the bounding rectangle template<class Polygon, class Point, class Round> static inline Polygon qwtToPoints( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to, Round round ) { Polygon polyline( to - from + 1 ); Point *points = polyline.data(); int numPoints = 0; if ( boundingRect.isValid() ) { // iterating over all values // filtering out all points outside of // the bounding rectangle for ( int i = from; i <= to; i++ ) { const QPointF sample = series->sample( i ); const double x = xMap.transform( sample.x() ); const double y = yMap.transform( sample.y() ); if ( boundingRect.contains( x, y ) ) { points[ numPoints ].rx() = round( x ); points[ numPoints ].ry() = round( y ); numPoints++; } } polyline.resize( numPoints ); } else { // simply iterating over all values // without any filtering for ( int i = from; i <= to; i++ ) { const QPointF sample = series->sample( i ); const double x = xMap.transform( sample.x() ); const double y = yMap.transform( sample.y() ); points[ numPoints ].rx() = round( x ); points[ numPoints ].ry() = round( y ); numPoints++; } } return polyline; } static inline QPolygon qwtToPointsI( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) { return qwtToPoints<QPolygon, QPoint>( boundingRect, xMap, yMap, series, from, to, QwtRoundI() ); } template<class Round> static inline QPolygonF qwtToPointsF( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to, Round round ) { return qwtToPoints<QPolygonF, QPointF>( boundingRect, xMap, yMap, series, from, to, round ); } // Mapping points with filtering out consecutive // points mapped to the same position template<class Polygon, class Point, class Round> static inline Polygon qwtToPolylineFiltered( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to, Round round ) { // in curves with many points consecutive points // are often mapped to the same position. As this might // result in empty lines ( or symbols hidden by others ) // we try to filter them out Polygon polyline( to - from + 1 ); Point *points = polyline.data(); const QPointF sample0 = series->sample( from ); points[0].rx() = round( xMap.transform( sample0.x() ) ); points[0].ry() = round( yMap.transform( sample0.y() ) ); int pos = 0; for ( int i = from + 1; i <= to; i++ ) { const QPointF sample = series->sample( i ); const Point p( round( xMap.transform( sample.x() ) ), round( yMap.transform( sample.y() ) ) ); if ( points[pos] != p ) points[++pos] = p; } polyline.resize( pos + 1 ); return polyline; } static inline QPolygon qwtToPolylineFilteredI( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) { return qwtToPolylineFiltered<QPolygon, QPoint>( xMap, yMap, series, from, to, QwtRoundI() ); } template<class Round> static inline QPolygonF qwtToPolylineFilteredF( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to, Round round ) { return qwtToPolylineFiltered<QPolygonF, QPointF>( xMap, yMap, series, from, to, round ); } template<class Polygon, class Point> static inline Polygon qwtToPointsFiltered( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) { // F.e. in scatter plots ( no connecting lines ) we // can sort out all duplicates ( not only consecutive points ) Polygon polygon( to - from + 1 ); Point *points = polygon.data(); QwtPixelMatrix pixelMatrix( boundingRect.toAlignedRect() ); int numPoints = 0; for ( int i = from; i <= to; i++ ) { const QPointF sample = series->sample( i ); const int x = qwtRoundValue( xMap.transform( sample.x() ) ); const int y = qwtRoundValue( yMap.transform( sample.y() ) ); if ( pixelMatrix.testAndSetPixel( x, y, true ) == false ) { points[ numPoints ].rx() = x; points[ numPoints ].ry() = y; numPoints++; } } polygon.resize( numPoints ); return polygon; } static inline QPolygon qwtToPointsFilteredI( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) { return qwtToPointsFiltered<QPolygon, QPoint>( boundingRect, xMap, yMap, series, from, to ); } static inline QPolygonF qwtToPointsFilteredF( const QRectF &boundingRect, const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) { return qwtToPointsFiltered<QPolygonF, QPointF>( boundingRect, xMap, yMap, series, from, to ); } class QwtPointMapper::PrivateData { public: PrivateData(): boundingRect( qwtInvalidRect ) { } QRectF boundingRect; QwtPointMapper::TransformationFlags flags; }; //! Constructor QwtPointMapper::QwtPointMapper() { d_data = new PrivateData(); } //! Destructor QwtPointMapper::~QwtPointMapper() { delete d_data; } /*! Set the flags affecting the transformation process \param flags Flags \sa flags(), setFlag() */ void QwtPointMapper::setFlags( TransformationFlags flags ) { d_data->flags = flags; } /*! \return Flags affecting the transformation process \sa setFlags(), setFlag() */ QwtPointMapper::TransformationFlags QwtPointMapper::flags() const { return d_data->flags; } /*! Modify a flag affecting the transformation process \param flag Flag type \param on Value \sa flag(), setFlags() */ void QwtPointMapper::setFlag( TransformationFlag flag, bool on ) { if ( on ) d_data->flags |= flag; else d_data->flags &= ~flag; } /*! \return True, when the flag is set \param flag Flag type \sa setFlag(), setFlags() */ bool QwtPointMapper::testFlag( TransformationFlag flag ) const { return d_data->flags & flag; } /*! Set a bounding rectangle for the point mapping algorithm A valid bounding rectangle can be used for optimizations \param rect Bounding rectangle \sa boundingRect() */ void QwtPointMapper::setBoundingRect( const QRectF &rect ) { d_data->boundingRect = rect; } /*! \return Bounding rectangle \sa setBoundingRect() */ QRectF QwtPointMapper::boundingRect() const { return d_data->boundingRect; } /*! \brief Translate a series of points into a QPolygonF When the WeedOutPoints flag is enabled consecutive points, that are mapped to the same position will be one point. When RoundPoints is set all points are rounded to integers but returned as PolygonF - what only makes sense when the further processing of the values need a QPolygonF. \param xMap x map \param yMap y map \param series Series of points to be mapped \param from Index of the first point to be painted \param to Index of the last point to be painted \return Translated polygon */ QPolygonF QwtPointMapper::toPolygonF( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) const { QPolygonF polyline; if ( d_data->flags & WeedOutPoints ) { if ( d_data->flags & RoundPoints ) { polyline = qwtToPolylineFilteredF( xMap, yMap, series, from, to, QwtRoundF() ); } else { polyline = qwtToPolylineFilteredF( xMap, yMap, series, from, to, QwtNoRoundF() ); } } else { if ( d_data->flags & RoundPoints ) { polyline = qwtToPointsF( qwtInvalidRect, xMap, yMap, series, from, to, QwtRoundF() ); } else { polyline = qwtToPointsF( qwtInvalidRect, xMap, yMap, series, from, to, QwtNoRoundF() ); } } return polyline; } /*! \brief Translate a series of points into a QPolygon When the WeedOutPoints flag is enabled consecutive points, that are mapped to the same position will be one point. \param xMap x map \param yMap y map \param series Series of points to be mapped \param from Index of the first point to be painted \param to Index of the last point to be painted \return Translated polygon */ QPolygon QwtPointMapper::toPolygon( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) const { QPolygon polyline; if ( d_data->flags & WeedOutPoints ) { polyline = qwtToPolylineFilteredI( xMap, yMap, series, from, to ); } else { polyline = qwtToPointsI( qwtInvalidRect, xMap, yMap, series, from, to ); } return polyline; } /*! \brief Translate a series into a QPolygonF - WeedOutPoints & RoundPoints & boundingRect().isValid() All points that are mapped to the same position will be one point. Points outside of the bounding rectangle are ignored. - WeedOutPoints & RoundPoints & !boundingRect().isValid() All consecutive points that are mapped to the same position will one point - WeedOutPoints & !RoundPoints All consecutive points that are mapped to the same position will one point - !WeedOutPoints & boundingRect().isValid() Points outside of the bounding rectangle are ignored. When RoundPoints is set all points are rounded to integers but returned as PolygonF - what only makes sense when the further processing of the values need a QPolygonF. \param xMap x map \param yMap y map \param series Series of points to be mapped \param from Index of the first point to be painted \param to Index of the last point to be painted \return Translated polygon */ QPolygonF QwtPointMapper::toPointsF( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) const { QPolygonF points; if ( d_data->flags & WeedOutPoints ) { if ( d_data->flags & RoundPoints ) { if ( d_data->boundingRect.isValid() ) { points = qwtToPointsFilteredF( d_data->boundingRect, xMap, yMap, series, from, to ); } else { // without a bounding rectangle all we can // do is to filter out duplicates of // consecutive points points = qwtToPolylineFilteredF( xMap, yMap, series, from, to, QwtRoundF() ); } } else { // when rounding is not allowed we can't use // qwtToPointsFilteredF points = qwtToPolylineFilteredF( xMap, yMap, series, from, to, QwtNoRoundF() ); } } else { if ( d_data->flags & RoundPoints ) { points = qwtToPointsF( d_data->boundingRect, xMap, yMap, series, from, to, QwtRoundF() ); } else { points = qwtToPointsF( d_data->boundingRect, xMap, yMap, series, from, to, QwtNoRoundF() ); } } return points; } /*! \brief Translate a series of points into a QPolygon - WeedOutPoints & boundingRect().isValid() All points that are mapped to the same position will be one point. Points outside of the bounding rectangle are ignored. - WeedOutPoints & !boundingRect().isValid() All consecutive points that are mapped to the same position will one point - !WeedOutPoints & boundingRect().isValid() Points outside of the bounding rectangle are ignored. \param xMap x map \param yMap y map \param series Series of points to be mapped \param from Index of the first point to be painted \param to Index of the last point to be painted \return Translated polygon */ QPolygon QwtPointMapper::toPoints( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to ) const { QPolygon points; if ( d_data->flags & WeedOutPoints ) { if ( d_data->boundingRect.isValid() ) { points = qwtToPointsFilteredI( d_data->boundingRect, xMap, yMap, series, from, to ); } else { // when we don't have the bounding rectangle all // we can do is to filter out consecutive duplicates points = qwtToPolylineFilteredI( xMap, yMap, series, from, to ); } } else { points = qwtToPointsI( d_data->boundingRect, xMap, yMap, series, from, to ); } return points; } /*! \brief Translate a series into a QImage \param xMap x map \param yMap y map \param series Series of points to be mapped \param from Index of the first point to be painted \param to Index of the last point to be painted \param pen Pen used for drawing a point of the image, where a point is mapped to \param antialiased True, when the dots should be displayed antialiased \param numThreads Number of threads to be used for rendering. If numThreads is set to 0, the system specific ideal thread count is used. \return Image displaying the series */ QImage QwtPointMapper::toImage( const QwtScaleMap &xMap, const QwtScaleMap &yMap, const QwtSeriesData<QPointF> *series, int from, int to, const QPen &pen, bool antialiased, uint numThreads ) const { Q_UNUSED( antialiased ) #if QWT_USE_THREADS if ( numThreads == 0 ) numThreads = QThread::idealThreadCount(); if ( numThreads <= 0 ) numThreads = 1; #else Q_UNUSED( numThreads ) #endif // a very special optimization for scatter plots // where every sample is mapped to one pixel only. const QRect rect = d_data->boundingRect.toAlignedRect(); QImage image( rect.size(), QImage::Format_ARGB32 ); image.fill( Qt::transparent ); if ( pen.width() <= 1 && pen.color().alpha() == 255 ) { QwtDotsCommand command; command.series = series; command.rgb = pen.color().rgba(); #if QWT_USE_THREADS const int numPoints = ( to - from + 1 ) / numThreads; QList< QFuture<void> > futures; for ( uint i = 0; i < numThreads; i++ ) { const QPoint pos = rect.topLeft(); const int index0 = from + i * numPoints; if ( i == numThreads - 1 ) { command.from = index0; command.to = to; qwtRenderDots( xMap, yMap, command, pos, &image ); } else { command.from = index0; command.to = index0 + numPoints - 1; futures += QtConcurrent::run( &qwtRenderDots, xMap, yMap, command, pos, &image ); } } for ( int i = 0; i < futures.size(); i++ ) futures[i].waitForFinished(); #else command.from = from; command.to = to; qwtRenderDots( xMap, yMap, command, rect.topLeft(), &image ); #endif } else { // fallback implementation: to be replaced later by // setting the pixels of the image like above, TODO ... QPainter painter( &image ); painter.setPen( pen ); painter.setRenderHint( QPainter::Antialiasing, antialiased ); const int chunkSize = 1000; for ( int i = from; i <= to; i += chunkSize ) { const int indexTo = qMin( i + chunkSize - 1, to ); const QPolygon points = toPoints( xMap, yMap, series, i, indexTo ); painter.drawPoints( points ); } } return image; }