/*=================================================================== ======================================================================*/ /** * @file * @brief Represents one unmanned aerial vehicle * * @author Lorenz Meier * */ #include #include #include #include #include #include #include #include #include "UAS.h" #include "LinkInterface.h" #include "UASManager.h" #include "QGC.h" #include "GAudioOutput.h" #include "MAVLinkProtocol.h" #include "QGCMAVLink.h" #include "LinkManager.h" #include "SerialLink.h" #ifdef QGC_PROTOBUF_ENABLED #include #endif UAS::UAS(MAVLinkProtocol* protocol, int id) : UASInterface(), uasId(id), startTime(QGC::groundTimeMilliseconds()), commStatus(COMM_DISCONNECTED), name(""), autopilot(-1), links(new QList()), unknownPackets(), mavlink(protocol), waypointManager(this), thrustSum(0), thrustMax(10), startVoltage(0), warnVoltage(9.5f), warnLevelPercent(20.0f), currentVoltage(12.0f), lpVoltage(12.0f), batteryRemainingEstimateEnabled(true), mode(-1), status(-1), navMode(-1), onboardTimeOffset(0), controlRollManual(true), controlPitchManual(true), controlYawManual(true), controlThrustManual(true), manualRollAngle(0), manualPitchAngle(0), manualYawAngle(0), manualThrust(0), receiveDropRate(0), sendDropRate(0), lowBattAlarm(false), positionLock(false), localX(0.0), localY(0.0), localZ(0.0), latitude(0.0), longitude(0.0), altitude(0.0), roll(0.0), pitch(0.0), yaw(0.0), statusTimeout(new QTimer(this)), #if defined(QGC_PROTOBUF_ENABLED) && defined(QGC_USE_PIXHAWK_MESSAGES) receivedPointCloudTimestamp(0.0), receivedRGBDImageTimestamp(0.0), receivedObstacleListTimestamp(0.0), receivedPathTimestamp(0.0), #endif paramsOnceRequested(false), airframe(QGC_AIRFRAME_EASYSTAR), attitudeKnown(false), paramManager(NULL), attitudeStamped(false), lastAttitude(0), simulation(new QGCFlightGearLink(this)), isLocalPositionKnown(false), isGlobalPositionKnown(false), systemIsArmed(false) { for (unsigned int i = 0; i<255;++i) { componentID[i] = -1; componentMulti[i] = false; } color = UASInterface::getNextColor(); setBatterySpecs(QString("9V,9.5V,12.6V")); connect(statusTimeout, SIGNAL(timeout()), this, SLOT(updateState())); connect(this, SIGNAL(systemSpecsChanged(int)), this, SLOT(writeSettings())); statusTimeout->start(500); readSettings(); // Initial signals emit disarmed(); emit armingChanged(false); } UAS::~UAS() { writeSettings(); delete links; links=NULL; } void UAS::writeSettings() { QSettings settings; settings.beginGroup(QString("MAV%1").arg(uasId)); settings.setValue("NAME", this->name); settings.setValue("AIRFRAME", this->airframe); settings.setValue("AP_TYPE", this->autopilot); settings.setValue("BATTERY_SPECS", getBatterySpecs()); settings.endGroup(); settings.sync(); } void UAS::readSettings() { QSettings settings; settings.beginGroup(QString("MAV%1").arg(uasId)); this->name = settings.value("NAME", this->name).toString(); this->airframe = settings.value("AIRFRAME", this->airframe).toInt(); this->autopilot = settings.value("AP_TYPE", this->autopilot).toInt(); if (settings.contains("BATTERY_SPECS")) { setBatterySpecs(settings.value("BATTERY_SPECS").toString()); } settings.endGroup(); } int UAS::getUASID() const { return uasId; } void UAS::updateState() { // Check if heartbeat timed out quint64 heartbeatInterval = QGC::groundTimeUsecs() - lastHeartbeat; if (heartbeatInterval > timeoutIntervalHeartbeat) { emit heartbeatTimeout(heartbeatInterval); emit heartbeatTimeout(); } // Position lock is set by the MAVLink message handler // if no position lock is available, indicate an error if (positionLock) { positionLock = false; } else { if (((mode&MAV_MODE_FLAG_DECODE_POSITION_AUTO) || (mode&MAV_MODE_FLAG_DECODE_POSITION_GUIDED)) && positionLock) { GAudioOutput::instance()->notifyNegative(); } } } void UAS::setSelected() { if (UASManager::instance()->getActiveUAS() != this) { UASManager::instance()->setActiveUAS(this); emit systemSelected(true); } } bool UAS::getSelected() const { return (UASManager::instance()->getActiveUAS() == this); } void UAS::receiveMessage(LinkInterface* link, mavlink_message_t message) { if (!link) return; if (!links->contains(link)) { addLink(link); // qDebug() << __FILE__ << __LINE__ << "ADDED LINK!" << link->getName(); } if (!components.contains(message.compid)) { QString componentName; switch (message.compid) { case MAV_COMP_ID_ALL: { componentName = "ANONYMOUS"; break; } case MAV_COMP_ID_IMU: { componentName = "IMU #1"; break; } case MAV_COMP_ID_CAMERA: { componentName = "CAMERA"; break; } case MAV_COMP_ID_MISSIONPLANNER: { componentName = "MISSIONPLANNER"; break; } } components.insert(message.compid, componentName); emit componentCreated(uasId, message.compid, componentName); } // qDebug() << "UAS RECEIVED from" << message.sysid << "component" << message.compid << "msg id" << message.msgid << "seq no" << message.seq; // Only accept messages from this system (condition 1) // and only then if a) attitudeStamped is disabled OR b) attitudeStamped is enabled // and we already got one attitude packet if (message.sysid == uasId && (!attitudeStamped || (attitudeStamped && (lastAttitude != 0)) || message.msgid == MAVLINK_MSG_ID_ATTITUDE)) { QString uasState; QString stateDescription; bool multiComponentSourceDetected = false; bool wrongComponent = false; switch (message.compid) { case MAV_COMP_ID_IMU_2: // Prefer IMU 2 over IMU 1 (FIXME) componentID[message.msgid] = MAV_COMP_ID_IMU_2; break; default: // Do nothing break; } // Store component ID if (componentID[message.msgid] == -1) { // Prefer the first component componentID[message.msgid] = message.compid; } else { // Got this message already if (componentID[message.msgid] != message.compid) { componentMulti[message.msgid] = true; wrongComponent = true; } } if (componentMulti[message.msgid] == true) multiComponentSourceDetected = true; switch (message.msgid) { case MAVLINK_MSG_ID_HEARTBEAT: { if (multiComponentSourceDetected && wrongComponent) { break; } lastHeartbeat = QGC::groundTimeUsecs(); emit heartbeat(this); mavlink_heartbeat_t state; mavlink_msg_heartbeat_decode(&message, &state); // Send the base_mode and system_status values to the plotter. This uses the ground time // so the Ground Time checkbox must be ticked for these values to display quint64 time = getUnixTime(); QString name = QString("M%1:HEARTBEAT.%2").arg(message.sysid); emit valueChanged(uasId, name.arg("base_mode"), "bits", state.base_mode, time); emit valueChanged(uasId, name.arg("custom_mode"), "bits", state.custom_mode, time); emit valueChanged(uasId, name.arg("system_status"), "-", state.system_status, time); // Set new type if it has changed if (this->type != state.type) { this->type = state.type; if (airframe == 0) { switch (type) { case MAV_TYPE_FIXED_WING: setAirframe(UASInterface::QGC_AIRFRAME_EASYSTAR); break; case MAV_TYPE_QUADROTOR: setAirframe(UASInterface::QGC_AIRFRAME_CHEETAH); break; case MAV_TYPE_HEXAROTOR: setAirframe(UASInterface::QGC_AIRFRAME_HEXCOPTER); break; default: // Do nothing break; } } this->autopilot = state.autopilot; emit systemTypeSet(this, type); } bool currentlyArmed = state.base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY; if (systemIsArmed != currentlyArmed) { systemIsArmed = currentlyArmed; emit armingChanged(systemIsArmed); if (systemIsArmed) { emit armed(); } else { emit disarmed(); } } QString audiostring = "System " + getUASName(); QString stateAudio = ""; QString modeAudio = ""; QString navModeAudio = ""; bool statechanged = false; bool modechanged = false; if (state.system_status != this->status) { statechanged = true; this->status = state.system_status; getStatusForCode((int)state.system_status, uasState, stateDescription); emit statusChanged(this, uasState, stateDescription); emit statusChanged(this->status); shortStateText = uasState; stateAudio = tr(" changed status to ") + uasState; } if (this->mode != static_cast(state.base_mode)) { modechanged = true; this->mode = static_cast(state.base_mode); shortModeText = getShortModeTextFor(this->mode); emit modeChanged(this->getUASID(), shortModeText, ""); modeAudio = " is now in " + shortModeText; } if (navMode != state.custom_mode) { emit navModeChanged(uasId, state.custom_mode, getNavModeText(state.custom_mode)); navMode = state.custom_mode; //navModeAudio = tr(" changed nav mode to ") + tr("FIXME"); } // AUDIO if (modechanged && statechanged) { // Output both messages audiostring += modeAudio + " and " + stateAudio; } else if (modechanged || statechanged) { // Output the one message audiostring += modeAudio + stateAudio + navModeAudio; } if ((int)state.system_status == (int)MAV_STATE_CRITICAL || state.system_status == (int)MAV_STATE_EMERGENCY) { GAudioOutput::instance()->startEmergency(); } else if (modechanged || statechanged) { GAudioOutput::instance()->stopEmergency(); GAudioOutput::instance()->say(audiostring.toLower()); } } break; case MAVLINK_MSG_ID_SYS_STATUS: { if (multiComponentSourceDetected && wrongComponent) { break; } mavlink_sys_status_t state; mavlink_msg_sys_status_decode(&message, &state); // Prepare for sending data to the realtime plotter, which is every field excluding onboard_control_sensors_present. quint64 time = getUnixTime(); QString name = QString("M%1:SYS_STATUS.%2").arg(message.sysid); emit valueChanged(uasId, name.arg("sensors_enabled"), "bits", state.onboard_control_sensors_enabled, time); emit valueChanged(uasId, name.arg("sensors_health"), "bits", state.onboard_control_sensors_health, time); emit valueChanged(uasId, name.arg("errors_comm"), "-", state.errors_comm, time); emit valueChanged(uasId, name.arg("errors_count1"), "-", state.errors_count1, time); emit valueChanged(uasId, name.arg("errors_count2"), "-", state.errors_count2, time); emit valueChanged(uasId, name.arg("errors_count3"), "-", state.errors_count3, time); emit valueChanged(uasId, name.arg("errors_count4"), "-", state.errors_count4, time); // Process CPU load. emit loadChanged(this,state.load/10.0f); emit valueChanged(uasId, name.arg("load"), "%", state.load/10.0f, time); // Battery charge/time remaining/voltage calculations currentVoltage = state.voltage_battery/1000.0f; lpVoltage = filterVoltage(currentVoltage); if (startVoltage == 0) startVoltage = currentVoltage; timeRemaining = calculateTimeRemaining(); if (!batteryRemainingEstimateEnabled && chargeLevel != -1) { chargeLevel = state.battery_remaining; } emit batteryChanged(this, lpVoltage, getChargeLevel(), timeRemaining); emit valueChanged(uasId, name.arg("battery_remaining"), "%", getChargeLevel(), time); emit voltageChanged(message.sysid, currentVoltage); emit valueChanged(uasId, name.arg("battery_voltage"), "V", currentVoltage, time); // And if the battery current draw is measured, log that also. if (state.current_battery != -1) { emit valueChanged(uasId, name.arg("battery_current"), "A", ((double)state.current_battery) / 100.0f, time); } // LOW BATTERY ALARM if (lpVoltage < warnVoltage) { startLowBattAlarm(); } else { stopLowBattAlarm(); } // control_sensors_enabled: // relevant bits: 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control emit attitudeControlEnabled(state.onboard_control_sensors_enabled & (1 << 11)); emit positionYawControlEnabled(state.onboard_control_sensors_enabled & (1 << 12)); emit positionZControlEnabled(state.onboard_control_sensors_enabled & (1 << 13)); emit positionXYControlEnabled(state.onboard_control_sensors_enabled & (1 << 14)); // Trigger drop rate updates as needed. Here we convert the incoming // drop_rate_comm value from 1/100 of a percent in a uint16 to a true // percentage as a float. We also cap the incoming value at 100% as defined // by the MAVLink specifications. if (state.drop_rate_comm > 10000) { state.drop_rate_comm = 10000; } emit dropRateChanged(this->getUASID(), state.drop_rate_comm/100.0f); emit valueChanged(uasId, name.arg("drop_rate_comm"), "%", state.drop_rate_comm/100.0f, time); } break; case MAVLINK_MSG_ID_ATTITUDE: { if (wrongComponent) break; mavlink_attitude_t attitude; mavlink_msg_attitude_decode(&message, &attitude); quint64 time = getUnixReferenceTime(attitude.time_boot_ms); lastAttitude = time; roll = QGC::limitAngleToPMPIf(attitude.roll); pitch = QGC::limitAngleToPMPIf(attitude.pitch); yaw = QGC::limitAngleToPMPIf(attitude.yaw); // // Emit in angles // // Convert yaw angle to compass value // // in 0 - 360 deg range // float compass = (yaw/M_PI)*180.0+360.0f; // if (compass > -10000 && compass < 10000) // { // while (compass > 360.0f) { // compass -= 360.0f; // } // } // else // { // // Set to 0, since it is an invalid value // compass = 0.0f; // } attitudeKnown = true; emit attitudeChanged(this, roll, pitch, yaw, time); emit attitudeChanged(this, message.compid, roll, pitch, yaw, time); emit attitudeSpeedChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time); } break; case MAVLINK_MSG_ID_HIL_CONTROLS: { mavlink_hil_controls_t hil; mavlink_msg_hil_controls_decode(&message, &hil); emit hilControlsChanged(hil.time_usec, hil.roll_ailerons, hil.pitch_elevator, hil.yaw_rudder, hil.throttle, hil.mode, hil.nav_mode); } break; case MAVLINK_MSG_ID_VFR_HUD: { mavlink_vfr_hud_t hud; mavlink_msg_vfr_hud_decode(&message, &hud); quint64 time = getUnixTime(); // Display updated values emit thrustChanged(this, hud.throttle/100.0); if (!attitudeKnown) { yaw = QGC::limitAngleToPMPId((((double)hud.heading-180.0)/360.0)*M_PI); emit attitudeChanged(this, roll, pitch, yaw, time); } emit altitudeChanged(uasId, hud.alt); emit speedChanged(this, hud.airspeed, 0.0f, hud.climb, time); } break; case MAVLINK_MSG_ID_LOCAL_POSITION_NED: //std::cerr << std::endl; //std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl; { mavlink_local_position_ned_t pos; mavlink_msg_local_position_ned_decode(&message, &pos); quint64 time = getUnixTime(pos.time_boot_ms); // Emit position always with component ID emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time); if (!wrongComponent) { localX = pos.x; localY = pos.y; localZ = pos.z; // Emit emit localPositionChanged(this, pos.x, pos.y, pos.z, time); emit speedChanged(this, pos.vx, pos.vy, pos.vz, time); // Set internal state if (!positionLock) { // If position was not locked before, notify positive GAudioOutput::instance()->notifyPositive(); } positionLock = true; isLocalPositionKnown = true; } } break; case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE: { mavlink_global_vision_position_estimate_t pos; mavlink_msg_global_vision_position_estimate_decode(&message, &pos); quint64 time = getUnixTime(pos.usec); emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time); emit attitudeChanged(this, message.compid, pos.roll, pos.pitch, pos.yaw, time); } break; case MAVLINK_MSG_ID_GLOBAL_POSITION_INT: //std::cerr << std::endl; //std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl; { mavlink_global_position_int_t pos; mavlink_msg_global_position_int_decode(&message, &pos); quint64 time = getUnixTime(); latitude = pos.lat/(double)1E7; longitude = pos.lon/(double)1E7; altitude = pos.alt/1000.0; speedX = pos.vx/100.0; speedY = pos.vy/100.0; speedZ = pos.vz/100.0; emit globalPositionChanged(this, latitude, longitude, altitude, time); emit speedChanged(this, speedX, speedY, speedZ, time); // Set internal state if (!positionLock) { // If position was not locked before, notify positive GAudioOutput::instance()->notifyPositive(); } positionLock = true; isGlobalPositionKnown = true; //TODO fix this hack for forwarding of global position for patch antenna tracking forwardMessage(message); } break; case MAVLINK_MSG_ID_GPS_RAW_INT: { mavlink_gps_raw_int_t pos; mavlink_msg_gps_raw_int_decode(&message, &pos); // SANITY CHECK // only accept values in a realistic range // quint64 time = getUnixTime(pos.time_usec); quint64 time = getUnixTime(pos.time_usec); emit gpsLocalizationChanged(this, pos.fix_type); // TODO: track localization state not only for gps but also for other loc. sources int loc_type = pos.fix_type; if (loc_type == 1) { loc_type = 0; } emit localizationChanged(this, loc_type); if (pos.fix_type > 2) { emit globalPositionChanged(this, pos.lat/(double)1E7, pos.lon/(double)1E7, pos.alt/1000.0, time); latitude = pos.lat/(double)1E7; longitude = pos.lon/(double)1E7; altitude = pos.alt/1000.0; positionLock = true; isGlobalPositionKnown = true; // Check for NaN int alt = pos.alt; if (!isnan(alt) && !isinf(alt)) { alt = 0; //emit textMessageReceived(uasId, message.compid, 255, "GCS ERROR: RECEIVED NaN or Inf FOR ALTITUDE"); } // FIXME REMOVE LATER emit valueChanged(uasId, "altitude", "m", pos.alt/(double)1E3, time); // Smaller than threshold and not NaN float vel = pos.vel/100.0f; if (vel < 1000000 && !isnan(vel) && !isinf(vel)) { // FIXME REMOVE LATER emit valueChanged(uasId, "speed", "m/s", vel, time); //qDebug() << "GOT GPS RAW"; // emit speedChanged(this, (double)pos.v, 0.0, 0.0, time); } else { emit textMessageReceived(uasId, message.compid, 255, QString("GCS ERROR: RECEIVED INVALID SPEED OF %1 m/s").arg(vel)); } } } break; case MAVLINK_MSG_ID_GPS_STATUS: { mavlink_gps_status_t pos; mavlink_msg_gps_status_decode(&message, &pos); for(int i = 0; i < (int)pos.satellites_visible; i++) { emit gpsSatelliteStatusChanged(uasId, (unsigned char)pos.satellite_prn[i], (unsigned char)pos.satellite_elevation[i], (unsigned char)pos.satellite_azimuth[i], (unsigned char)pos.satellite_snr[i], static_cast(pos.satellite_used[i])); } } break; case MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN: { mavlink_gps_global_origin_t pos; mavlink_msg_gps_global_origin_decode(&message, &pos); emit homePositionChanged(uasId, pos.latitude, pos.longitude, pos.altitude); } break; case MAVLINK_MSG_ID_RC_CHANNELS_RAW: { mavlink_rc_channels_raw_t channels; mavlink_msg_rc_channels_raw_decode(&message, &channels); emit remoteControlRSSIChanged(channels.rssi/255.0f); emit remoteControlChannelRawChanged(0, channels.chan1_raw); emit remoteControlChannelRawChanged(1, channels.chan2_raw); emit remoteControlChannelRawChanged(2, channels.chan3_raw); emit remoteControlChannelRawChanged(3, channels.chan4_raw); emit remoteControlChannelRawChanged(4, channels.chan5_raw); emit remoteControlChannelRawChanged(5, channels.chan6_raw); emit remoteControlChannelRawChanged(6, channels.chan7_raw); emit remoteControlChannelRawChanged(7, channels.chan8_raw); } break; case MAVLINK_MSG_ID_RC_CHANNELS_SCALED: { mavlink_rc_channels_scaled_t channels; mavlink_msg_rc_channels_scaled_decode(&message, &channels); emit remoteControlRSSIChanged(channels.rssi/255.0f); emit remoteControlChannelScaledChanged(0, channels.chan1_scaled/10000.0f); emit remoteControlChannelScaledChanged(1, channels.chan2_scaled/10000.0f); emit remoteControlChannelScaledChanged(2, channels.chan3_scaled/10000.0f); emit remoteControlChannelScaledChanged(3, channels.chan4_scaled/10000.0f); emit remoteControlChannelScaledChanged(4, channels.chan5_scaled/10000.0f); emit remoteControlChannelScaledChanged(5, channels.chan6_scaled/10000.0f); emit remoteControlChannelScaledChanged(6, channels.chan7_scaled/10000.0f); emit remoteControlChannelScaledChanged(7, channels.chan8_scaled/10000.0f); } break; case MAVLINK_MSG_ID_PARAM_VALUE: { mavlink_param_value_t value; mavlink_msg_param_value_decode(&message, &value); QByteArray bytes(value.param_id, MAVLINK_MSG_PARAM_VALUE_FIELD_PARAM_ID_LEN); QString parameterName = QString(bytes); int component = message.compid; mavlink_param_union_t val; val.param_float = value.param_value; val.type = value.param_type; // Insert component if necessary if (!parameters.contains(component)) { parameters.insert(component, new QMap()); } // Insert parameter into registry if (parameters.value(component)->contains(parameterName)) parameters.value(component)->remove(parameterName); // Insert with correct type switch (value.param_type) { case MAVLINK_TYPE_FLOAT: { // Variant QVariant param(val.param_float); parameters.value(component)->insert(parameterName, param); // Emit change emit parameterChanged(uasId, message.compid, parameterName, param); emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param); qDebug() << "RECEIVED PARAM:" << param; } break; case MAVLINK_TYPE_UINT32_T: { // Variant QVariant param(val.param_uint32); parameters.value(component)->insert(parameterName, param); // Emit change emit parameterChanged(uasId, message.compid, parameterName, param); emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param); qDebug() << "RECEIVED PARAM:" << param; } break; case MAVLINK_TYPE_INT32_T: { // Variant QVariant param(val.param_int32); parameters.value(component)->insert(parameterName, param); // Emit change emit parameterChanged(uasId, message.compid, parameterName, param); emit parameterChanged(uasId, message.compid, value.param_count, value.param_index, parameterName, param); qDebug() << "RECEIVED PARAM:" << param; } break; default: qCritical() << "INVALID DATA TYPE USED AS PARAMETER VALUE: " << value.param_type; } } break; case MAVLINK_MSG_ID_COMMAND_ACK: mavlink_command_ack_t ack; mavlink_msg_command_ack_decode(&message, &ack); if (ack.result == 1) { emit textMessageReceived(uasId, message.compid, 0, tr("SUCCESS: Executed CMD: %1").arg(ack.command)); } else { emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Rejected CMD: %1").arg(ack.command)); } break; case MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT: { mavlink_roll_pitch_yaw_thrust_setpoint_t out; mavlink_msg_roll_pitch_yaw_thrust_setpoint_decode(&message, &out); quint64 time = getUnixTimeFromMs(out.time_boot_ms); emit attitudeThrustSetPointChanged(this, out.roll, out.pitch, out.yaw, out.thrust, time); } break; case MAVLINK_MSG_ID_MISSION_COUNT: { mavlink_mission_count_t wpc; mavlink_msg_mission_count_decode(&message, &wpc); if (wpc.target_system == mavlink->getSystemId()) { waypointManager.handleWaypointCount(message.sysid, message.compid, wpc.count); } else { qDebug() << "Got waypoint message, but was not for me"; } } break; case MAVLINK_MSG_ID_MISSION_ITEM: { mavlink_mission_item_t wp; mavlink_msg_mission_item_decode(&message, &wp); //qDebug() << "got waypoint (" << wp.seq << ") from ID " << message.sysid << " x=" << wp.x << " y=" << wp.y << " z=" << wp.z; if(wp.target_system == mavlink->getSystemId()) { waypointManager.handleWaypoint(message.sysid, message.compid, &wp); } else { qDebug() << "Got waypoint message, but was not for me"; } } break; case MAVLINK_MSG_ID_MISSION_ACK: { mavlink_mission_ack_t wpa; mavlink_msg_mission_ack_decode(&message, &wpa); if(wpa.target_system == mavlink->getSystemId() && wpa.target_component == mavlink->getComponentId()) { waypointManager.handleWaypointAck(message.sysid, message.compid, &wpa); } } break; case MAVLINK_MSG_ID_MISSION_REQUEST: { mavlink_mission_request_t wpr; mavlink_msg_mission_request_decode(&message, &wpr); if(wpr.target_system == mavlink->getSystemId()) { waypointManager.handleWaypointRequest(message.sysid, message.compid, &wpr); } else { qDebug() << "Got waypoint message, but was not for me"; } } break; case MAVLINK_MSG_ID_MISSION_ITEM_REACHED: { mavlink_mission_item_reached_t wpr; mavlink_msg_mission_item_reached_decode(&message, &wpr); waypointManager.handleWaypointReached(message.sysid, message.compid, &wpr); QString text = QString("System %1 reached waypoint %2").arg(getUASName()).arg(wpr.seq); GAudioOutput::instance()->say(text); emit textMessageReceived(message.sysid, message.compid, 0, text); } break; case MAVLINK_MSG_ID_MISSION_CURRENT: { mavlink_mission_current_t wpc; mavlink_msg_mission_current_decode(&message, &wpc); waypointManager.handleWaypointCurrent(message.sysid, message.compid, &wpc); } break; case MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT: { if (multiComponentSourceDetected && wrongComponent) { break; } mavlink_local_position_setpoint_t p; mavlink_msg_local_position_setpoint_decode(&message, &p); emit positionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw, QGC::groundTimeUsecs()); } break; case MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT: { mavlink_set_local_position_setpoint_t p; mavlink_msg_set_local_position_setpoint_decode(&message, &p); emit userPositionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw); } break; case MAVLINK_MSG_ID_STATUSTEXT: { QByteArray b; b.resize(MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN); mavlink_msg_statustext_get_text(&message, b.data()); //b.append('\0'); QString text = QString(b); int severity = mavlink_msg_statustext_get_severity(&message); //qDebug() << "RECEIVED STATUS:" << text;false //emit statusTextReceived(severity, text); emit textMessageReceived(uasId, message.compid, severity, text); } break; #ifdef MAVLINK_ENABLED_PIXHAWK case MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE: { qDebug() << "RECIEVED ACK TO GET IMAGE"; mavlink_data_transmission_handshake_t p; mavlink_msg_data_transmission_handshake_decode(&message, &p); imageSize = p.size; imagePackets = p.packets; imagePayload = p.payload; imageQuality = p.jpg_quality; imageType = p.type; imageWidth = p.width; imageHeight = p.height; imageStart = QGC::groundTimeMilliseconds(); } break; case MAVLINK_MSG_ID_ENCAPSULATED_DATA: { mavlink_encapsulated_data_t img; mavlink_msg_encapsulated_data_decode(&message, &img); int seq = img.seqnr; int pos = seq * imagePayload; // Check if we have a valid transaction if (imagePackets == 0) { // NO VALID TRANSACTION - ABORT // Restart statemachine imagePacketsArrived = 0; } for (int i = 0; i < imagePayload; ++i) { if (pos <= imageSize) { imageRecBuffer[pos] = img.data[i]; } ++pos; } ++imagePacketsArrived; // emit signal if all packets arrived if ((imagePacketsArrived >= imagePackets)) { // Restart statemachine imagePacketsArrived = 0; emit imageReady(this); qDebug() << "imageReady emitted. all packets arrived"; } } break; #endif // case MAVLINK_MSG_ID_OBJECT_DETECTION_EVENT: // { // mavlink_object_detection_event_t event; // mavlink_msg_object_detection_event_decode(&message, &event); // QString str(event.name); // emit objectDetected(event.time, event.object_id, event.type, str, event.quality, event.bearing, event.distance); // } // break; // WILL BE ENABLED ONCE MESSAGE IS IN COMMON MESSAGE SET // case MAVLINK_MSG_ID_MEMORY_VECT: // { // mavlink_memory_vect_t vect; // mavlink_msg_memory_vect_decode(&message, &vect); // QString str("mem_%1"); // quint64 time = getUnixTime(0); // int16_t *mem0 = (int16_t *)&vect.value[0]; // uint16_t *mem1 = (uint16_t *)&vect.value[0]; // int32_t *mem2 = (int32_t *)&vect.value[0]; // // uint32_t *mem3 = (uint32_t *)&vect.value[0]; causes overload problem // float *mem4 = (float *)&vect.value[0]; // if ( vect.ver == 0) vect.type = 0, vect.ver = 1; else ; // if ( vect.ver == 1) // { // switch (vect.type) { // default: // case 0: // for (int i = 0; i < 16; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "i16", mem0[i], time); // break; // case 1: // for (int i = 0; i < 16; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "ui16", mem1[i], time); // break; // case 2: // for (int i = 0; i < 16; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "Q15", (float)mem0[i]/32767.0, time); // break; // case 3: // for (int i = 0; i < 16; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "1Q14", (float)mem0[i]/16383.0, time); // break; // case 4: // for (int i = 0; i < 8; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time); // break; // case 5: // for (int i = 0; i < 8; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time); // break; // case 6: // for (int i = 0; i < 8; i++) // // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "float", mem4[i], time); // break; // } // } // } // break; #ifdef MAVLINK_ENABLED_UALBERTA case MAVLINK_MSG_ID_NAV_FILTER_BIAS: { mavlink_nav_filter_bias_t bias; mavlink_msg_nav_filter_bias_decode(&message, &bias); quint64 time = getUnixTime(); // FIXME REMOVE LATER emit valueChanged(uasId, "b_f[0]", "raw", bias.accel_0, time); // FIXME REMOVE LATER emit valueChanged(uasId, "b_f[1]", "raw", bias.accel_1, time); // FIXME REMOVE LATER emit valueChanged(uasId, "b_f[2]", "raw", bias.accel_2, time); // FIXME REMOVE LATER emit valueChanged(uasId, "b_w[0]", "raw", bias.gyro_0, time); // FIXME REMOVE LATER emit valueChanged(uasId, "b_w[1]", "raw", bias.gyro_1, time); // FIXME REMOVE LATER emit valueChanged(uasId, "b_w[2]", "raw", bias.gyro_2, time); } break; case MAVLINK_MSG_ID_RADIO_CALIBRATION: { mavlink_radio_calibration_t radioMsg; mavlink_msg_radio_calibration_decode(&message, &radioMsg); QVector aileron; QVector elevator; QVector rudder; QVector gyro; QVector pitch; QVector throttle; for (int i=0; i radioData = new RadioCalibrationData(aileron, elevator, rudder, gyro, pitch, throttle); emit radioCalibrationReceived(radioData); delete radioData; } break; #endif // Messages to ignore case MAVLINK_MSG_ID_RAW_IMU: case MAVLINK_MSG_ID_SCALED_IMU: case MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT: case MAVLINK_MSG_ID_RAW_PRESSURE: case MAVLINK_MSG_ID_SCALED_PRESSURE: case MAVLINK_MSG_ID_SERVO_OUTPUT_RAW: case MAVLINK_MSG_ID_OPTICAL_FLOW: case MAVLINK_MSG_ID_DEBUG_VECT: case MAVLINK_MSG_ID_DEBUG: case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT: case MAVLINK_MSG_ID_NAMED_VALUE_INT: break; default: { if (!unknownPackets.contains(message.msgid)) { unknownPackets.append(message.msgid); QString errString = tr("UNABLE TO DECODE MESSAGE NUMBER %1").arg(message.msgid); GAudioOutput::instance()->say(errString+tr(", please check console for details.")); emit textMessageReceived(uasId, message.compid, 255, errString); std::cout << "Unable to decode message from system " << std::dec << static_cast(message.sysid) << " with message id:" << static_cast(message.msgid) << std::endl; //qDebug() << std::cerr << "Unable to decode message from system " << std::dec << static_cast(message.acid) << " with message id:" << static_cast(message.msgid) << std::endl; } } break; } } } #if defined(QGC_PROTOBUF_ENABLED) void UAS::receiveExtendedMessage(LinkInterface* link, std::tr1::shared_ptr message) { if (!link) { return; } if (!links->contains(link)) { addLink(link); } const google::protobuf::Descriptor* descriptor = message->GetDescriptor(); if (!descriptor) { return; } const google::protobuf::FieldDescriptor* headerField = descriptor->FindFieldByName("header"); if (!headerField) { return; } const google::protobuf::Descriptor* headerDescriptor = headerField->message_type(); if (!headerDescriptor) { return; } const google::protobuf::FieldDescriptor* sourceSysIdField = headerDescriptor->FindFieldByName("source_sysid"); if (!sourceSysIdField) { return; } const google::protobuf::Reflection* reflection = message->GetReflection(); const google::protobuf::Message& headerMsg = reflection->GetMessage(*message, headerField); const google::protobuf::Reflection* headerReflection = headerMsg.GetReflection(); int source_sysid = headerReflection->GetInt32(headerMsg, sourceSysIdField); if (source_sysid != uasId) { return; } #ifdef QGC_USE_PIXHAWK_MESSAGES if (message->GetTypeName() == pointCloud.GetTypeName()) { receivedPointCloudTimestamp = QGC::groundTimeSeconds(); pointCloudMutex.lock(); pointCloud.CopyFrom(*message); pointCloudMutex.unlock(); emit pointCloudChanged(this); } else if (message->GetTypeName() == rgbdImage.GetTypeName()) { receivedRGBDImageTimestamp = QGC::groundTimeSeconds(); rgbdImageMutex.lock(); rgbdImage.CopyFrom(*message); rgbdImageMutex.unlock(); emit rgbdImageChanged(this); } else if (message->GetTypeName() == obstacleList.GetTypeName()) { receivedObstacleListTimestamp = QGC::groundTimeSeconds(); obstacleListMutex.lock(); obstacleList.CopyFrom(*message); obstacleListMutex.unlock(); emit obstacleListChanged(this); } else if (message->GetTypeName() == path.GetTypeName()) { receivedPathTimestamp = QGC::groundTimeSeconds(); pathMutex.lock(); path.CopyFrom(*message); pathMutex.unlock(); emit pathChanged(this); } #endif } #endif void UAS::setHomePosition(double lat, double lon, double alt) { QMessageBox msgBox; msgBox.setIcon(QMessageBox::Warning); msgBox.setText("Setting new World Coordinate Frame Origin"); msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location"); msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel); msgBox.setDefaultButton(QMessageBox::Cancel); int ret = msgBox.exec(); // Close the message box shortly after the click to prevent accidental clicks QTimer::singleShot(5000, &msgBox, SLOT(reject())); if (ret == QMessageBox::Yes) { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 0, 0, 0, 0, lat, lon, alt); // Send message twice to increase chance that it reaches its goal sendMessage(msg); // Send new home position to UAS mavlink_set_gps_global_origin_t home; home.target_system = uasId; home.latitude = lat*1E7; home.longitude = lon*1E7; home.altitude = alt*1000; qDebug() << "lat:" << home.latitude << " lon:" << home.longitude; mavlink_msg_set_gps_global_origin_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &home); sendMessage(msg); } } void UAS::setLocalOriginAtCurrentGPSPosition() { QMessageBox msgBox; msgBox.setIcon(QMessageBox::Warning); msgBox.setText("Setting new World Coordinate Frame Origin"); msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location"); msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel); msgBox.setDefaultButton(QMessageBox::Cancel); int ret = msgBox.exec(); // Close the message box shortly after the click to prevent accidental clicks QTimer::singleShot(5000, &msgBox, SLOT(reject())); if (ret == QMessageBox::Yes) { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 1, 0, 0, 0, 0, 0, 0); // Send message twice to increase chance that it reaches its goal sendMessage(msg); } } void UAS::setLocalPositionSetpoint(float x, float y, float z, float yaw) { #ifdef MAVLINK_ENABLED_PIXHAWK mavlink_message_t msg; mavlink_msg_set_local_position_setpoint_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_FRAME_LOCAL_NED, x, y, z, yaw/M_PI*180.0); sendMessage(msg); #else Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(z); Q_UNUSED(yaw); #endif } void UAS::setLocalPositionOffset(float x, float y, float z, float yaw) { #ifdef MAVLINK_ENABLED_PIXHAWK mavlink_message_t msg; mavlink_msg_set_position_control_offset_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, x, y, z, yaw); sendMessage(msg); #else Q_UNUSED(x); Q_UNUSED(y); Q_UNUSED(z); Q_UNUSED(yaw); #endif } void UAS::startRadioControlCalibration() { mavlink_message_t msg; // Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 0, 1, 0, 0, 0); sendMessage(msg); } void UAS::startDataRecording() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 2, 0, 0, 0); sendMessage(msg); } void UAS::stopDataRecording() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 0, 0, 0, 0); sendMessage(msg); } void UAS::startMagnetometerCalibration() { mavlink_message_t msg; // Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 1, 0, 0, 0, 0, 0); sendMessage(msg); } void UAS::startGyroscopeCalibration() { mavlink_message_t msg; // Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 1, 0, 0, 0, 0, 0, 0); sendMessage(msg); } void UAS::startPressureCalibration() { mavlink_message_t msg; // Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 1, 0, 0, 0, 0); sendMessage(msg); } quint64 UAS::getUnixReferenceTime(quint64 time) { // Same as getUnixTime, but does not react to attitudeStamped mode if (time == 0) { // qDebug() << "XNEW time:" < has to be // a Unix epoch timestamp. Do nothing. return time/1000; } } /** * @warning If attitudeStamped is enabled, this function will not actually return the precise time stamp * of this measurement augmented to UNIX time, but will MOVE the timestamp IN TIME to match * the last measured attitude. There is no reason why one would want this, except for * system setups where the onboard clock is not present or broken and datasets should * be collected that are still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED * RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL! */ quint64 UAS::getUnixTimeFromMs(quint64 time) { return getUnixTime(time*1000); } /** * @warning If attitudeStamped is enabled, this function will not actually return the precise time stamp * of this measurement augmented to UNIX time, but will MOVE the timestamp IN TIME to match * the last measured attitude. There is no reason why one would want this, except for * system setups where the onboard clock is not present or broken and datasets should * be collected that are still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED * RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL! */ quint64 UAS::getUnixTime(quint64 time) { quint64 ret = 0; if (attitudeStamped) { ret = lastAttitude; } if (time == 0) { ret = QGC::groundTimeMilliseconds(); } // Check if time is smaller than 40 years, // assuming no system without Unix timestamp // runs longer than 40 years continuously without // reboot. In worst case this will add/subtract the // communication delay between GCS and MAV, // it will never alter the timestamp in a safety // critical way. // // Calculation: // 40 years // 365 days // 24 hours // 60 minutes // 60 seconds // 1000 milliseconds // 1000 microseconds #ifndef _MSC_VER else if (time < 1261440000000000LLU) #else else if (time < 1261440000000000) #endif { // qDebug() << "GEN time:" << time/1000 + onboardTimeOffset; if (onboardTimeOffset == 0) { onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000; } ret = time/1000 + onboardTimeOffset; } else { // Time is not zero and larger than 40 years -> has to be // a Unix epoch timestamp. Do nothing. ret = time/1000; } return ret; } QList UAS::getParameterNames(int component) { if (parameters.contains(component)) { return parameters.value(component)->keys(); } else { return QList(); } } QList UAS::getComponentIds() { return parameters.keys(); } void UAS::setMode(int mode) { //this->mode = mode; //no call assignament, update receive message from UAS mavlink_message_t msg; mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, (uint8_t)uasId, (uint8_t)mode, (uint16_t)navMode); sendMessage(msg); qDebug() << "SENDING REQUEST TO SET MODE TO SYSTEM" << uasId << ", REQUEST TO SET MODE " << (uint8_t)mode; } void UAS::sendMessage(mavlink_message_t message) { // Emit message on all links that are currently connected foreach (LinkInterface* link, *links) { if (link) { sendMessage(link, message); } else { // Remove from list links->removeAt(links->indexOf(link)); } } } void UAS::forwardMessage(mavlink_message_t message) { // Emit message on all links that are currently connected QListlink_list = LinkManager::instance()->getLinksForProtocol(mavlink); foreach(LinkInterface* link, link_list) { if (link) { SerialLink* serial = dynamic_cast(link); if(serial != 0) { for(int i=0; isize(); i++) { if(serial != links->at(i)) { qDebug()<<"Antenna tracking: Forwarding Over link: "<getName()<<" "<getSystemId(), mavlink->getComponentId(), link->getId(), message.len, messageKeys[message.msgid]); // If link is connected if (link->isConnected()) { // Send the portion of the buffer now occupied by the message link->writeBytes((const char*)buffer, len); } } /** * @param value battery voltage */ float UAS::filterVoltage(float value) const { return lpVoltage * 0.7f + value * 0.3f; } QString UAS::getNavModeText(int mode) { if (autopilot == MAV_AUTOPILOT_PIXHAWK) { switch (mode) { case 0: return QString("PREFLIGHT"); break; default: return QString("UNKNOWN"); } } else if (autopilot == MAV_AUTOPILOT_ARDUPILOTMEGA) { return QString("UNKNOWN"); } else if (autopilot == MAV_AUTOPILOT_OPENPILOT) { return QString("UNKNOWN"); } // If nothing matches, return unknown return QString("UNKNOWN"); } void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription) { switch (statusCode) { case MAV_STATE_UNINIT: uasState = tr("UNINIT"); stateDescription = tr("Unitialized, booting up."); break; case MAV_STATE_BOOT: uasState = tr("BOOT"); stateDescription = tr("Booting system, please wait."); break; case MAV_STATE_CALIBRATING: uasState = tr("CALIBRATING"); stateDescription = tr("Calibrating sensors, please wait."); break; case MAV_STATE_ACTIVE: uasState = tr("ACTIVE"); stateDescription = tr("Active, normal operation."); break; case MAV_STATE_STANDBY: uasState = tr("STANDBY"); stateDescription = tr("Standby mode, ready for liftoff."); break; case MAV_STATE_CRITICAL: uasState = tr("CRITICAL"); stateDescription = tr("FAILURE: Continuing operation."); break; case MAV_STATE_EMERGENCY: uasState = tr("EMERGENCY"); stateDescription = tr("EMERGENCY: Land Immediately!"); break; //case MAV_STATE_HILSIM: //uasState = tr("HIL SIM"); //stateDescription = tr("HIL Simulation, Sensors read from SIM"); //break; case MAV_STATE_POWEROFF: uasState = tr("SHUTDOWN"); stateDescription = tr("Powering off system."); break; default: uasState = tr("UNKNOWN"); stateDescription = tr("Unknown system state"); break; } } QImage UAS::getImage() { #ifdef MAVLINK_ENABLED_PIXHAWK qDebug() << "IMAGE TYPE:" << imageType; // RAW greyscale if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U) { // TODO FIXME int imgColors = 255;//imageSize/(imageWidth*imageHeight); //const int headerSize = 15; // Construct PGM header QString header("P5\n%1 %2\n%3\n"); header = header.arg(imageWidth).arg(imageHeight).arg(imgColors); QByteArray tmpImage(header.toStdString().c_str(), header.toStdString().size()); tmpImage.append(imageRecBuffer); //qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header; if (imageRecBuffer.isNull()) { qDebug()<< "could not convertToPGM()"; return QImage(); } if (!image.loadFromData(tmpImage, "PGM")) { qDebug()<< "could not create extracted image"; return QImage(); } } // BMP with header else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP || imageType == MAVLINK_DATA_STREAM_IMG_JPEG || imageType == MAVLINK_DATA_STREAM_IMG_PGM || imageType == MAVLINK_DATA_STREAM_IMG_PNG) { if (!image.loadFromData(imageRecBuffer)) { qDebug() << "Loading data from image buffer failed!"; } } // Restart statemachine imagePacketsArrived = 0; //imageRecBuffer.clear(); return image; #else return QImage(); #endif } void UAS::requestImage() { #ifdef MAVLINK_ENABLED_PIXHAWK qDebug() << "trying to get an image from the uas..."; // check if there is already an image transmission going on if (imagePacketsArrived == 0) { mavlink_message_t msg; mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, DATA_TYPE_JPEG_IMAGE, 0, 0, 0, 0, 0, 50); sendMessage(msg); } #endif } /* MANAGEMENT */ /* * * @return The uptime in milliseconds * **/ quint64 UAS::getUptime() const { if(startTime == 0) { return 0; } else { return QGC::groundTimeMilliseconds() - startTime; } } int UAS::getCommunicationStatus() const { return commStatus; } void UAS::requestParameters() { mavlink_message_t msg; mavlink_msg_param_request_list_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), MAV_COMP_ID_ALL); sendMessage(msg); } void UAS::writeParametersToStorage() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 1, -1, -1, -1, 0, 0, 0); qDebug() << "SENT COMMAND" << MAV_CMD_PREFLIGHT_STORAGE; sendMessage(msg); } void UAS::readParametersFromStorage() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 0, -1, -1, -1, 0, 0, 0); sendMessage(msg); } void UAS::enableAllDataTransmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on // 0 is a magic ID and will enable/disable the standard message set except for heartbeat stream.req_stream_id = MAV_DATA_STREAM_ALL; // Select the update rate in Hz the message should be send // All messages will be send with their default rate // TODO: use 0 to turn off and get rid of enable/disable? will require // a different magic flag for turning on defaults, possibly something really high like 1111 ? stream.req_message_rate = 0; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); } void UAS::enableRawSensorDataTransmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSORS; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); } void UAS::enableExtendedSystemStatusTransmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_EXTENDED_STATUS; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); } void UAS::enableRCChannelDataTransmission(int rate) { #if defined(MAVLINK_ENABLED_UALBERTA_MESSAGES) mavlink_message_t msg; mavlink_msg_request_rc_channels_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, enabled); sendMessage(msg); #else mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_RC_CHANNELS; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); #endif } void UAS::enableRawControllerDataTransmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_RAW_CONTROLLER; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); } //void UAS::enableRawSensorFusionTransmission(int rate) //{ // // Buffers to write data to // mavlink_message_t msg; // mavlink_request_data_stream_t stream; // // Select the message to request from now on // stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSOR_FUSION; // // Select the update rate in Hz the message should be send // stream.req_message_rate = rate; // // Start / stop the message // stream.start_stop = (rate) ? 1 : 0; // // The system which should take this command // stream.target_system = uasId; // // The component / subsystem which should take this command // stream.target_component = 0; // // Encode and send the message // mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // // Send message twice to increase chance of reception // sendMessage(msg); // sendMessage(msg); //} void UAS::enablePositionTransmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_POSITION; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); } void UAS::enableExtra1Transmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_EXTRA1; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); sendMessage(msg); } void UAS::enableExtra2Transmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_EXTRA2; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); sendMessage(msg); } void UAS::enableExtra3Transmission(int rate) { // Buffers to write data to mavlink_message_t msg; mavlink_request_data_stream_t stream; // Select the message to request from now on stream.req_stream_id = MAV_DATA_STREAM_EXTRA3; // Select the update rate in Hz the message should be send stream.req_message_rate = rate; // Start / stop the message stream.start_stop = (rate) ? 1 : 0; // The system which should take this command stream.target_system = uasId; // The component / subsystem which should take this command stream.target_component = 0; // Encode and send the message mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream); // Send message twice to increase chance of reception sendMessage(msg); sendMessage(msg); } /** * Set a parameter value onboard * * @param component The component to set the parameter * @param id Name of the parameter * @param value Parameter value */ void UAS::setParameter(const int component, const QString& id, const QVariant& value) { if (!id.isNull()) { mavlink_message_t msg; mavlink_param_set_t p; mavlink_param_union_t union_value; // Assign correct value based on QVariant switch (value.type()) { case QVariant::Int: union_value.param_int32 = value.toInt(); p.param_type = MAVLINK_TYPE_INT32_T; break; case QVariant::UInt: union_value.param_uint32 = value.toUInt(); p.param_type = MAVLINK_TYPE_UINT32_T; break; case QMetaType::Float: union_value.param_float = value.toFloat(); p.param_type = MAVLINK_TYPE_FLOAT; break; default: qCritical() << "ABORTED PARAM SEND, NO VALID QVARIANT TYPE"; return; } p.param_value = union_value.param_float; p.target_system = (uint8_t)uasId; p.target_component = (uint8_t)component; qDebug() << "SENT PARAM:" << value; // Copy string into buffer, ensuring not to exceed the buffer size for (unsigned int i = 0; i < sizeof(p.param_id); i++) { // String characters if ((int)i < id.length() && i < (sizeof(p.param_id) - 1)) { p.param_id[i] = id.toAscii()[i]; } // // Null termination at end of string or end of buffer // else if ((int)i == id.length() || i == (sizeof(p.param_id) - 1)) // { // p.param_id[i] = '\0'; // } // Zero fill else { p.param_id[i] = 0; } } mavlink_msg_param_set_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &p); sendMessage(msg); } } void UAS::requestParameter(int component, int id) { // Request parameter, use parameter name to request it mavlink_message_t msg; mavlink_param_request_read_t read; read.param_index = id; read.param_id[0] = '\0'; // Enforce null termination read.target_system = uasId; read.target_component = component; mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read); sendMessage(msg); qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM ID" << id; } void UAS::requestParameter(int component, const QString& parameter) { // Request parameter, use parameter name to request it mavlink_message_t msg; mavlink_param_request_read_t read; read.param_index = -1; // Copy full param name or maximum max field size if (parameter.length() > MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN) { emit textMessageReceived(uasId, 0, 255, QString("QGC WARNING: Parameter name %1 is more than %2 bytes long. This might lead to errors and mishaps!").arg(parameter).arg(MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN-1)); } memcpy(read.param_id, parameter.toStdString().c_str(), qMax(parameter.length(), MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN)); read.param_id[15] = '\0'; // Enforce null termination read.target_system = uasId; read.target_component = component; mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read); sendMessage(msg); qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM NAME" << parameter; } void UAS::setSystemType(int systemType) { type = systemType; // If the airframe is still generic, change it to a close default type if (airframe == 0) { switch (systemType) { case MAV_TYPE_FIXED_WING: airframe = QGC_AIRFRAME_EASYSTAR; break; case MAV_TYPE_QUADROTOR: airframe = QGC_AIRFRAME_MIKROKOPTER; break; } } emit systemSpecsChanged(uasId); } void UAS::setUASName(const QString& name) { if (name != "") { this->name = name; writeSettings(); emit nameChanged(name); emit systemSpecsChanged(uasId); } } void UAS::executeCommand(MAV_CMD command) { mavlink_message_t msg; mavlink_command_long_t cmd; cmd.command = (uint8_t)command; cmd.confirmation = 0; cmd.param1 = 0.0f; cmd.param2 = 0.0f; cmd.param3 = 0.0f; cmd.param4 = 0.0f; cmd.param5 = 0.0f; cmd.param6 = 0.0f; cmd.param7 = 0.0f; cmd.target_system = uasId; cmd.target_component = 0; mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd); sendMessage(msg); } void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component) { mavlink_message_t msg; mavlink_command_long_t cmd; cmd.command = (uint8_t)command; cmd.confirmation = confirmation; cmd.param1 = param1; cmd.param2 = param2; cmd.param3 = param3; cmd.param4 = param4; cmd.param5 = param5; cmd.param6 = param6; cmd.param7 = param7; cmd.target_system = uasId; cmd.target_component = component; mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd); sendMessage(msg); } /** * Launches the system * **/ void UAS::launch() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_NAV_TAKEOFF, 1, 0, 0, 0, 0, 0, 0, 0); sendMessage(msg); } /** * Depending on the UAS, this might make the rotors of a helicopter spinning * **/ void UAS::armSystem() { mavlink_message_t msg; mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode | MAV_MODE_FLAG_SAFETY_ARMED); sendMessage(msg); } /** * @warning Depending on the UAS, this might completely stop all motors. * **/ void UAS::disarmSystem() { mavlink_message_t msg; mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode, navMode & !MAV_MODE_FLAG_SAFETY_ARMED); sendMessage(msg); } void UAS::setManualControlCommands(double roll, double pitch, double yaw, double thrust) { // Scale values double rollPitchScaling = 0.2f; double yawScaling = 0.5f; double thrustScaling = 1.0f; manualRollAngle = roll * rollPitchScaling; manualPitchAngle = pitch * rollPitchScaling; manualYawAngle = yaw * yawScaling; manualThrust = thrust * thrustScaling; // If system has manual inputs enabled and is armed if((mode & MAV_MODE_FLAG_DECODE_POSITION_MANUAL) && (mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY)) { mavlink_message_t message; mavlink_msg_manual_control_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, (float)manualRollAngle, (float)manualPitchAngle, (float)manualYawAngle, (float)manualThrust, controlRollManual, controlPitchManual, controlYawManual, controlThrustManual); sendMessage(message); qDebug() << __FILE__ << __LINE__ << ": SENT MANUAL CONTROL MESSAGE: roll" << manualRollAngle << " pitch: " << manualPitchAngle << " yaw: " << manualYawAngle << " thrust: " << manualThrust; emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds()); } else { qDebug() << "JOYSTICK/MANUAL CONTROL: IGNORING COMMANDS: Set mode to MANUAL to send joystick commands first"; } } int UAS::getSystemType() { return this->type; } void UAS::receiveButton(int buttonIndex) { switch (buttonIndex) { case 0: break; case 1: break; default: break; } // qDebug() << __FILE__ << __LINE__ << ": Received button clicked signal (button # is: " << buttonIndex << "), UNIMPLEMENTED IN MAVLINK!"; } void UAS::halt() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_HOLD, MAV_GOTO_HOLD_AT_CURRENT_POSITION, 0, 0, 0, 0, 0); sendMessage(msg); } void UAS::go() { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_CONTINUE, MAV_GOTO_HOLD_AT_CURRENT_POSITION, 0, 0, 0, 0, 0); sendMessage(msg); } /** Order the robot to return home / to land on the runway **/ void UAS::home() { mavlink_message_t msg; double latitude = UASManager::instance()->getHomeLatitude(); double longitude = UASManager::instance()->getHomeLongitude(); double altitude = UASManager::instance()->getHomeAltitude(); int frame = UASManager::instance()->getHomeFrame(); mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_CONTINUE, MAV_GOTO_HOLD_AT_CURRENT_POSITION, frame, 0, latitude, longitude, altitude); sendMessage(msg); } /** * The MAV starts the emergency landing procedure. The behaviour depends on the onboard implementation * and might differ between systems. */ void UAS::emergencySTOP() { // FIXME MAVLINKV10PORTINGNEEDED halt(); } /** * Shut down this mav - All onboard systems are immediately shut down (e.g. the main power line is cut). * @warning This might lead to a crash * * The command will not be executed until emergencyKILLConfirm is issues immediately afterwards */ bool UAS::emergencyKILL() { halt(); // FIXME MAVLINKV10PORTINGNEEDED // bool result = false; // QMessageBox msgBox; // msgBox.setIcon(QMessageBox::Critical); // msgBox.setText("EMERGENCY: KILL ALL MOTORS ON UAS"); // msgBox.setInformativeText("Do you want to cut power on all systems?"); // msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel); // msgBox.setDefaultButton(QMessageBox::Cancel); // int ret = msgBox.exec(); // // Close the message box shortly after the click to prevent accidental clicks // QTimer::singleShot(5000, &msgBox, SLOT(reject())); // if (ret == QMessageBox::Yes) // { // mavlink_message_t msg; // // TODO Replace MG System ID with static function call and allow to change ID in GUI // mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_EMCY_KILL); // // Send message twice to increase chance of reception // sendMessage(msg); // sendMessage(msg); // result = true; // } // return result; return false; } void UAS::enableHil(bool enable) { // Connect Flight Gear Link if (enable) { startHil(); } else { stopHil(); } } /** * @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot) * @param roll Roll angle (rad) * @param pitch Pitch angle (rad) * @param yaw Yaw angle (rad) * @param rollspeed Roll angular speed (rad/s) * @param pitchspeed Pitch angular speed (rad/s) * @param yawspeed Yaw angular speed (rad/s) * @param lat Latitude, expressed as * 1E7 * @param lon Longitude, expressed as * 1E7 * @param alt Altitude in meters, expressed as * 1000 (millimeters) * @param vx Ground X Speed (Latitude), expressed as m/s * 100 * @param vy Ground Y Speed (Longitude), expressed as m/s * 100 * @param vz Ground Z Speed (Altitude), expressed as m/s * 100 * @param xacc X acceleration (mg) * @param yacc Y acceleration (mg) * @param zacc Z acceleration (mg) */ void UAS::sendHilState(uint64_t time_us, float roll, float pitch, float yaw, float rollspeed, float pitchspeed, float yawspeed, int32_t lat, int32_t lon, int32_t alt, int16_t vx, int16_t vy, int16_t vz, int16_t xacc, int16_t yacc, int16_t zacc) { mavlink_message_t msg; mavlink_msg_hil_state_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, time_us, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc); sendMessage(msg); } void UAS::startHil() { // Connect Flight Gear Link simulation->connectSimulation(); mavlink_message_t msg; mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode | MAV_MODE_FLAG_HIL_ENABLED, navMode); sendMessage(msg); } void UAS::stopHil() { simulation->disconnectSimulation(); mavlink_message_t msg; mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), mode & !MAV_MODE_FLAG_HIL_ENABLED, navMode); sendMessage(msg); } void UAS::shutdown() { bool result = false; QMessageBox msgBox; msgBox.setIcon(QMessageBox::Critical); msgBox.setText("Shutting down the UAS"); msgBox.setInformativeText("Do you want to shut down the onboard computer?"); msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel); msgBox.setDefaultButton(QMessageBox::Cancel); int ret = msgBox.exec(); // Close the message box shortly after the click to prevent accidental clicks QTimer::singleShot(5000, &msgBox, SLOT(reject())); if (ret == QMessageBox::Yes) { // If the active UAS is set, execute command mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN, 1, 0, 2, 0, 0, 0, 0, 0); sendMessage(msg); result = true; } } void UAS::setTargetPosition(float x, float y, float z, float yaw) { mavlink_message_t msg; mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_NAV_PATHPLANNING, 1, 2, 3, 0, yaw, x, y, z); sendMessage(msg); } /** * @return The name of this system as string in human-readable form */ QString UAS::getUASName(void) const { QString result; if (name == "") { result = tr("MAV ") + result.sprintf("%03d", getUASID()); } else { result = name; } return result; } const QString& UAS::getShortState() const { return shortStateText; } QString UAS::getShortModeTextFor(int id) { QString mode; uint8_t modeid = id; qDebug() << "MODE:" << modeid; // BASE MODE DECODING if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_AUTO) { mode += "AUTO"; } if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_GUIDED) { mode += "|GUID"; } if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_STABILIZE) { mode += "|STAB"; } if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_TEST) { mode += "|TEST"; } if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_MANUAL) { mode += "|MAN"; } if (modeid == 0) { mode = "PREFLIGHT"; } // ARMED STATE DECODING if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) { mode.prepend("A/"); } else { mode.prepend("D/"); } // HARDWARE IN THE LOOP DECODING if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_HIL) { mode.prepend("HIL:"); } return mode; } const QString& UAS::getShortMode() const { return shortModeText; } void UAS::addLink(LinkInterface* link) { if (!links->contains(link)) { links->append(link); connect(link, SIGNAL(destroyed(QObject*)), this, SLOT(removeLink(QObject*))); } } void UAS::removeLink(QObject* object) { LinkInterface* link = dynamic_cast(object); if (link) { links->removeAt(links->indexOf(link)); } } QList* UAS::getLinks() { return links; } QMap UAS::getComponents() { return components; } void UAS::setBattery(BatteryType type, int cells) { this->batteryType = type; this->cells = cells; switch (batteryType) { case NICD: break; case NIMH: break; case LIION: break; case LIPOLY: fullVoltage = this->cells * UAS::lipoFull; emptyVoltage = this->cells * UAS::lipoEmpty; break; case LIFE: break; case AGZN: break; } } void UAS::setBatterySpecs(const QString& specs) { if (specs.length() == 0 || specs.contains("%")) { batteryRemainingEstimateEnabled = false; bool ok; QString percent = specs; percent = percent.remove("%"); float temp = percent.toFloat(&ok); if (ok) { warnLevelPercent = temp; } else { emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong"); } } else { batteryRemainingEstimateEnabled = true; QString stringList = specs; stringList = stringList.remove("V"); stringList = stringList.remove("v"); QStringList parts = stringList.split(","); if (parts.length() == 3) { float temp; bool ok; // Get the empty voltage temp = parts.at(0).toFloat(&ok); if (ok) emptyVoltage = temp; // Get the warning voltage temp = parts.at(1).toFloat(&ok); if (ok) warnVoltage = temp; // Get the full voltage temp = parts.at(2).toFloat(&ok); if (ok) fullVoltage = temp; } else { emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong"); } } } QString UAS::getBatterySpecs() { if (batteryRemainingEstimateEnabled) { return QString("%1V,%2V,%3V").arg(emptyVoltage).arg(warnVoltage).arg(fullVoltage); } else { return QString("%1%").arg(warnLevelPercent); } } int UAS::calculateTimeRemaining() { quint64 dt = QGC::groundTimeMilliseconds() - startTime; double seconds = dt / 1000.0f; double voltDifference = startVoltage - currentVoltage; if (voltDifference <= 0) voltDifference = 0.00000000001f; double dischargePerSecond = voltDifference / seconds; int remaining = static_cast((currentVoltage - emptyVoltage) / dischargePerSecond); // Can never be below 0 if (remaining < 0) remaining = 0; return remaining; } /** * @return charge level in percent - 0 - 100 */ float UAS::getChargeLevel() { if (batteryRemainingEstimateEnabled) { if (lpVoltage < emptyVoltage) { chargeLevel = 0.0f; } else if (lpVoltage > fullVoltage) { chargeLevel = 100.0f; } else { chargeLevel = 100.0f * ((lpVoltage - emptyVoltage)/(fullVoltage - emptyVoltage)); } } return chargeLevel; } void UAS::startLowBattAlarm() { if (!lowBattAlarm) { GAudioOutput::instance()->alert(tr("system %1 has low battery").arg(getUASName())); QTimer::singleShot(2500, GAudioOutput::instance(), SLOT(startEmergency())); lowBattAlarm = true; } } void UAS::stopLowBattAlarm() { if (lowBattAlarm) { GAudioOutput::instance()->stopEmergency(); lowBattAlarm = false; } }