/* -*- mode: C++ ; c-file-style: "stroustrup" -*- ***************************** * Qwt Widget Library * Copyright (C) 1997 Josef Wilgen * Copyright (C) 2002 Uwe Rathmann * * This library is free software; you can redistribute it and/or * modify it under the terms of the Qwt License, Version 1.0 *****************************************************************************/ #include "qwt_math.h" #include "qwt_scale_map.h" #include "qwt_scale_engine.h" static const double _eps = 1.0e-6; /*! \brief Compare 2 values, relative to an interval Values are "equal", when : \f$\cdot value2 - value1 <= abs(intervalSize * 10e^{-6})\f$ \param value1 First value to compare \param value2 Second value to compare \param intervalSize interval size \return 0: if equal, -1: if value2 > value1, 1: if value1 > value2 */ int QwtScaleArithmetic::compareEps(double value1, double value2, double intervalSize) { const double eps = qwtAbs(_eps * intervalSize); if ( value2 - value1 > eps ) return -1; if ( value1 - value2 > eps ) return 1; return 0; } /*! Ceil a value, relative to an interval \param value Value to ceil \param intervalSize Interval size \sa floorEps */ double QwtScaleArithmetic::ceilEps(double value, double intervalSize) { const double eps = _eps * intervalSize; value = (value - eps) / intervalSize; return ceil(value) * intervalSize; } /*! Floor a value, relative to an interval \param value Value to floor \param intervalSize Interval size \sa floorEps */ double QwtScaleArithmetic::floorEps(double value, double intervalSize) { const double eps = _eps * intervalSize; value = (value + eps) / intervalSize; return floor(value) * intervalSize; } /* \brief Divide an interval into steps \f$stepSize = (intervalSize - intervalSize * 10e^{-6}) / numSteps\f$ \param intervalSize Interval size \param numSteps Number of steps \return Step size */ double QwtScaleArithmetic::divideEps(double intervalSize, double numSteps) { if ( numSteps == 0.0 || intervalSize == 0.0 ) return 0.0; return (intervalSize - (_eps * intervalSize)) / numSteps; } /*! Find the smallest value out of {1,2,5}*10^n with an integer number n which is greater than or equal to x \param x Input value */ double QwtScaleArithmetic::ceil125(double x) { if (x == 0.0) return 0.0; const double sign = (x > 0) ? 1.0 : -1.0; const double lx = log10(fabs(x)); const double p10 = floor(lx); double fr = pow(10.0, lx - p10); if (fr <=1.0) fr = 1.0; else if (fr <= 2.0) fr = 2.0; else if (fr <= 5.0) fr = 5.0; else fr = 10.0; return sign * fr * pow(10.0, p10); } /*! \brief Find the largest value out of {1,2,5}*10^n with an integer number n which is smaller than or equal to x \param x Input value */ double QwtScaleArithmetic::floor125(double x) { if (x == 0.0) return 0.0; double sign = (x > 0) ? 1.0 : -1.0; const double lx = log10(fabs(x)); const double p10 = floor(lx); double fr = pow(10.0, lx - p10); if (fr >= 10.0) fr = 10.0; else if (fr >= 5.0) fr = 5.0; else if (fr >= 2.0) fr = 2.0; else fr = 1.0; return sign * fr * pow(10.0, p10); } class QwtScaleEngine::PrivateData { public: PrivateData(): attributes(QwtScaleEngine::NoAttribute), loMargin(0.0), hiMargin(0.0), referenceValue(0.0) { } int attributes; // scale attributes double loMargin; // margins double hiMargin; double referenceValue; // reference value }; //! Ctor QwtScaleEngine::QwtScaleEngine() { d_data = new PrivateData; } //! Dtor QwtScaleEngine::~QwtScaleEngine () { delete d_data; } /*! \return the margin at the lower end of the scale The default margin is 0. \sa QwtScaleEngine::setMargins() */ double QwtScaleEngine::loMargin() const { return d_data->loMargin; } /*! \return the margin at the upper end of the scale The default margin is 0. \sa QwtScaleEngine::setMargins() */ double QwtScaleEngine::hiMargin() const { return d_data->hiMargin; } /*! \brief Specify margins at the scale's endpoints \param mlo minimum distance between the scale's lower boundary and the smallest enclosed value \param mhi minimum distance between the scale's upper boundary and the greatest enclosed value Margins can be used to leave a minimum amount of space between the enclosed intervals and the boundaries of the scale. \warning \li QwtLog10ScaleEngine measures the margins in decades. \sa QwtScaleEngine::hiMargin, QwtScaleEngine::loMargin */ void QwtScaleEngine::setMargins(double mlo, double mhi) { d_data->loMargin = qwtMax(mlo,0.0); d_data->hiMargin = qwtMax(mhi,0.0); } /*! Calculate a step size for an interval size \param intervalSize Interval size \param numSteps Number of steps \return Step size */ double QwtScaleEngine::divideInterval( double intervalSize, int numSteps) const { if ( numSteps <= 0 ) return 0.0; double v = QwtScaleArithmetic::divideEps(intervalSize, numSteps); return QwtScaleArithmetic::ceil125(v); } /*! Check if an interval "contains" a value \param interval Interval \param value Value \sa QwtScaleArithmetic::compareEps */ bool QwtScaleEngine::contains( const QwtDoubleInterval &interval, double value) const { if (!interval.isValid() ) return false; if ( QwtScaleArithmetic::compareEps(value, interval.minValue(), interval.width()) < 0 ) { return false; } if ( QwtScaleArithmetic::compareEps(value, interval.maxValue(), interval.width()) > 0 ) { return false; } return true; } /*! Remove ticks from a list, that are not inside an interval \param ticks Tick list \param interval Interval \return Stripped tick list */ QwtValueList QwtScaleEngine::strip( const QwtValueList& ticks, const QwtDoubleInterval &interval) const { if ( !interval.isValid() || ticks.count() == 0 ) return QwtValueList(); if ( contains(interval, ticks.first()) && contains(interval, ticks.last()) ) { return ticks; } QwtValueList strippedTicks; for ( int i = 0; i < (int)ticks.count(); i++ ) { if ( contains(interval, ticks[i]) ) strippedTicks += ticks[i]; } return strippedTicks; } /*! \brief Build an interval for a value In case of v == 0.0 the interval is [-0.5, 0.5], otherwide it is [0.5 * v, 1.5 * v] */ QwtDoubleInterval QwtScaleEngine::buildInterval(double v) const { const double delta = (v == 0.0) ? 0.5 : qwtAbs(0.5 * v); return QwtDoubleInterval(v - delta, v + delta); } /*! Change a scale attribute \param attribute Attribute to change \param on On/Off The behaviour of the scale engine can be changed with the following attributes:
QwtScaleEngine::IncludeReference
Build a scale which includes the reference value.
QwtScaleEngine::Symmetric
Build a scale which is symmetric to the reference value.
QwtScaleEngine::Floating
The endpoints of the scale are supposed to be equal the outmost included values plus the specified margins (see setMargins()). If this attribute is *not* set, the endpoints of the scale will be integer multiples of the step size.
QwtScaleEngine::Inverted
Turn the scale upside down.
\sa QwtScaleEngine::testAttribute() */ void QwtScaleEngine::setAttribute(Attribute attribute, bool on) { if (on) d_data->attributes |= attribute; else d_data->attributes &= (~attribute); } /*! Check if a attribute is set. \param attribute Attribute to be tested \sa QwtScaleEngine::setAttribute() for a description of the possible options. */ bool QwtScaleEngine::testAttribute(Attribute attribute) const { return bool(d_data->attributes & attribute); } /*! Change the scale attribute \param attributes Set scale attributes \sa QwtScaleEngine::attributes() */ void QwtScaleEngine::setAttributes(int attributes) { d_data->attributes = attributes; } /*! Return the scale attributes */ int QwtScaleEngine::attributes() const { return d_data->attributes; } /*! \brief Specify a reference point \param r new reference value The reference point is needed if options IncludeRef or Symmetric are active. Its default value is 0.0. */ void QwtScaleEngine::setReference(double r) { d_data->referenceValue = r; } /*! \return the reference value \sa QwtScaleEngine::setReference(), QwtScaleEngine::setAttribute() */ double QwtScaleEngine::reference() const { return d_data->referenceValue; } /*! Return a transformation, for linear scales */ QwtScaleTransformation *QwtLinearScaleEngine::transformation() const { return new QwtScaleTransformation(QwtScaleTransformation::Linear); } /*! Align and divide an interval \param maxNumSteps Max. number of steps \param x1 First limit of the interval (In/Out) \param x2 Second limit of the interval (In/Out) \param stepSize Step size (Out) \sa QwtLinearScaleEngine::setAttribute */ void QwtLinearScaleEngine::autoScale(int maxNumSteps, double &x1, double &x2, double &stepSize) const { QwtDoubleInterval interval(x1, x2); interval = interval.normalized(); interval.setMinValue(interval.minValue() - loMargin()); interval.setMaxValue(interval.maxValue() + hiMargin()); if (testAttribute(QwtScaleEngine::Symmetric)) interval = interval.symmetrize(reference()); if (testAttribute(QwtScaleEngine::IncludeReference)) interval = interval.extend(reference()); if (interval.width() == 0.0) interval = buildInterval(interval.minValue()); stepSize = divideInterval(interval.width(), qwtMax(maxNumSteps, 1)); if ( !testAttribute(QwtScaleEngine::Floating) ) interval = align(interval, stepSize); x1 = interval.minValue(); x2 = interval.maxValue(); if (testAttribute(QwtScaleEngine::Inverted)) { qSwap(x1, x2); stepSize = -stepSize; } } /*! \brief Calculate a scale division \param x1 First interval limit \param x2 Second interval limit \param maxMajSteps Maximum for the number of major steps \param maxMinSteps Maximum number of minor steps \param stepSize Step size. If stepSize == 0, the scaleEngine calculates one. \sa QwtScaleEngine::stepSize, QwtScaleEngine::subDivide */ QwtScaleDiv QwtLinearScaleEngine::divideScale(double x1, double x2, int maxMajSteps, int maxMinSteps, double stepSize) const { QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized(); if (interval.width() <= 0 ) return QwtScaleDiv(); stepSize = qwtAbs(stepSize); if ( stepSize == 0.0 ) { if ( maxMajSteps < 1 ) maxMajSteps = 1; stepSize = divideInterval(interval.width(), maxMajSteps); } QwtScaleDiv scaleDiv; if ( stepSize != 0.0 ) { QwtValueList ticks[QwtScaleDiv::NTickTypes]; buildTicks(interval, stepSize, maxMinSteps, ticks); scaleDiv = QwtScaleDiv(interval, ticks); } if ( x1 > x2 ) scaleDiv.invert(); return scaleDiv; } void QwtLinearScaleEngine::buildTicks( const QwtDoubleInterval& interval, double stepSize, int maxMinSteps, QwtValueList ticks[QwtScaleDiv::NTickTypes]) const { const QwtDoubleInterval boundingInterval = align(interval, stepSize); ticks[QwtScaleDiv::MajorTick] = buildMajorTicks(boundingInterval, stepSize); if ( maxMinSteps > 0 ) { buildMinorTicks(ticks[QwtScaleDiv::MajorTick], maxMinSteps, stepSize, ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick]); } for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ ) { ticks[i] = strip(ticks[i], interval); // ticks very close to 0.0 are // explicitely set to 0.0 for ( int j = 0; j < (int)ticks[i].count(); j++ ) { if ( QwtScaleArithmetic::compareEps(ticks[i][j], 0.0, stepSize) == 0 ) ticks[i][j] = 0.0; } } } QwtValueList QwtLinearScaleEngine::buildMajorTicks( const QwtDoubleInterval &interval, double stepSize) const { int numTicks = qRound(interval.width() / stepSize) + 1; #if 1 if ( numTicks > 10000 ) numTicks = 10000; #endif QwtValueList ticks; ticks += interval.minValue(); for (int i = 1; i < numTicks - 1; i++) ticks += interval.minValue() + i * stepSize; ticks += interval.maxValue(); return ticks; } void QwtLinearScaleEngine::buildMinorTicks( const QwtValueList& majorTicks, int maxMinSteps, double stepSize, QwtValueList &minorTicks, QwtValueList &mediumTicks) const { double minStep = divideInterval(stepSize, maxMinSteps); if (minStep == 0.0) return; // # ticks per interval int numTicks = (int)::ceil(qwtAbs(stepSize / minStep)) - 1; // Do the minor steps fit into the interval? if ( QwtScaleArithmetic::compareEps((numTicks + 1) * qwtAbs(minStep), qwtAbs(stepSize), stepSize) > 0) { numTicks = 1; minStep = stepSize * 0.5; } int medIndex = -1; if ( numTicks % 2 ) medIndex = numTicks / 2; // calculate minor ticks for (int i = 0; i < (int)majorTicks.count(); i++) { double val = majorTicks[i]; for (int k = 0; k < numTicks; k++) { val += minStep; double alignedValue = val; if (QwtScaleArithmetic::compareEps(val, 0.0, stepSize) == 0) alignedValue = 0.0; if ( k == medIndex ) mediumTicks += alignedValue; else minorTicks += alignedValue; } } } /*! \brief Align an interval to a step size The limits of an interval are aligned that both are integer multiples of the step size. \param interval Interval \param stepSize Step size \return Aligned interval */ QwtDoubleInterval QwtLinearScaleEngine::align( const QwtDoubleInterval &interval, double stepSize) const { const double x1 = QwtScaleArithmetic::floorEps(interval.minValue(), stepSize); const double x2 = QwtScaleArithmetic::ceilEps(interval.maxValue(), stepSize); return QwtDoubleInterval(x1, x2); } /*! Return a transformation, for logarithmic (base 10) scales */ QwtScaleTransformation *QwtLog10ScaleEngine::transformation() const { return new QwtScaleTransformation(QwtScaleTransformation::Log10); } /*! Align and divide an interval \param maxNumSteps Max. number of steps \param x1 First limit of the interval (In/Out) \param x2 Second limit of the interval (In/Out) \param stepSize Step size (Out) \sa QwtScaleEngine::setAttribute */ void QwtLog10ScaleEngine::autoScale(int maxNumSteps, double &x1, double &x2, double &stepSize) const { if ( x1 > x2 ) qSwap(x1, x2); QwtDoubleInterval interval(x1 / pow(10.0, loMargin()), x2 * pow(10.0, hiMargin()) ); double logRef = 1.0; if (reference() > LOG_MIN / 2) logRef = qwtMin(reference(), LOG_MAX / 2); if (testAttribute(QwtScaleEngine::Symmetric)) { const double delta = qwtMax(interval.maxValue() / logRef, logRef / interval.minValue()); interval.setInterval(logRef / delta, logRef * delta); } if (testAttribute(QwtScaleEngine::IncludeReference)) interval = interval.extend(logRef); interval = interval.limited(LOG_MIN, LOG_MAX); if (interval.width() == 0.0) interval = buildInterval(interval.minValue()); stepSize = divideInterval(log10(interval).width(), qwtMax(maxNumSteps, 1)); if ( stepSize < 1.0 ) stepSize = 1.0; if (!testAttribute(QwtScaleEngine::Floating)) interval = align(interval, stepSize); x1 = interval.minValue(); x2 = interval.maxValue(); if (testAttribute(QwtScaleEngine::Inverted)) { qSwap(x1, x2); stepSize = -stepSize; } } /*! \brief Calculate a scale division \param x1 First interval limit \param x2 Second interval limit \param maxMajSteps Maximum for the number of major steps \param maxMinSteps Maximum number of minor steps \param stepSize Step size. If stepSize == 0, the scaleEngine calculates one. \sa QwtScaleEngine::stepSize, QwtLog10ScaleEngine::subDivide */ QwtScaleDiv QwtLog10ScaleEngine::divideScale(double x1, double x2, int maxMajSteps, int maxMinSteps, double stepSize) const { QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized(); interval = interval.limited(LOG_MIN, LOG_MAX); if (interval.width() <= 0 ) return QwtScaleDiv(); if (interval.maxValue() / interval.minValue() < 10.0) { // scale width is less than one decade -> build linear scale QwtLinearScaleEngine linearScaler; linearScaler.setAttributes(attributes()); linearScaler.setReference(reference()); linearScaler.setMargins(loMargin(), hiMargin()); return linearScaler.divideScale(x1, x2, maxMajSteps, maxMinSteps, stepSize); } stepSize = qwtAbs(stepSize); if ( stepSize == 0.0 ) { if ( maxMajSteps < 1 ) maxMajSteps = 1; stepSize = divideInterval(log10(interval).width(), maxMajSteps); if ( stepSize < 1.0 ) stepSize = 1.0; // major step must be >= 1 decade } QwtScaleDiv scaleDiv; if ( stepSize != 0.0 ) { QwtValueList ticks[QwtScaleDiv::NTickTypes]; buildTicks(interval, stepSize, maxMinSteps, ticks); scaleDiv = QwtScaleDiv(interval, ticks); } if ( x1 > x2 ) scaleDiv.invert(); return scaleDiv; } void QwtLog10ScaleEngine::buildTicks( const QwtDoubleInterval& interval, double stepSize, int maxMinSteps, QwtValueList ticks[QwtScaleDiv::NTickTypes]) const { const QwtDoubleInterval boundingInterval = align(interval, stepSize); ticks[QwtScaleDiv::MajorTick] = buildMajorTicks(boundingInterval, stepSize); if ( maxMinSteps > 0 ) { ticks[QwtScaleDiv::MinorTick] = buildMinorTicks( ticks[QwtScaleDiv::MajorTick], maxMinSteps, stepSize); } for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ ) ticks[i] = strip(ticks[i], interval); } QwtValueList QwtLog10ScaleEngine::buildMajorTicks( const QwtDoubleInterval &interval, double stepSize) const { double width = log10(interval).width(); int numTicks = qRound(width / stepSize) + 1; if ( numTicks > 10000 ) numTicks = 10000; const double lxmin = log(interval.minValue()); const double lxmax = log(interval.maxValue()); const double lstep = (lxmax - lxmin) / double(numTicks - 1); QwtValueList ticks; ticks += interval.minValue(); for (int i = 1; i < numTicks; i++) ticks += exp(lxmin + double(i) * lstep); ticks += interval.maxValue(); return ticks; } QwtValueList QwtLog10ScaleEngine::buildMinorTicks( const QwtValueList &majorTicks, int maxMinSteps, double stepSize) const { if (stepSize < 1.1) // major step width is one decade { if ( maxMinSteps < 1 ) return QwtValueList(); int k0, kstep, kmax; if (maxMinSteps >= 8) { k0 = 2; kmax = 9; kstep = 1; } else if (maxMinSteps >= 4) { k0 = 2; kmax = 8; kstep = 2; } else if (maxMinSteps >= 2) { k0 = 2; kmax = 5; kstep = 3; } else { k0 = 5; kmax = 5; kstep = 1; } QwtValueList minorTicks; for (int i = 0; i < (int)majorTicks.count(); i++) { const double v = majorTicks[i]; for (int k = k0; k<= kmax; k+=kstep) minorTicks += v * double(k); } return minorTicks; } else // major step > one decade { double minStep = divideInterval(stepSize, maxMinSteps); if ( minStep == 0.0 ) return QwtValueList(); if ( minStep < 1.0 ) minStep = 1.0; // # subticks per interval int nMin = qRound(stepSize / minStep) - 1; // Do the minor steps fit into the interval? if ( QwtScaleArithmetic::compareEps((nMin + 1) * minStep, qwtAbs(stepSize), stepSize) > 0) { nMin = 0; } if (nMin < 1) return QwtValueList(); // no subticks // substep factor = 10^substeps const double minFactor = qwtMax(pow(10.0, minStep), 10.0); QwtValueList minorTicks; for (int i = 0; i < (int)majorTicks.count(); i++) { double val = majorTicks[i]; for (int k=0; k< nMin; k++) { val *= minFactor; minorTicks += val; } } return minorTicks; } } /*! \brief Align an interval to a step size The limits of an interval are aligned that both are integer multiples of the step size. \param interval Interval \param stepSize Step size \return Aligned interval */ QwtDoubleInterval QwtLog10ScaleEngine::align( const QwtDoubleInterval &interval, double stepSize) const { const QwtDoubleInterval intv = log10(interval); const double x1 = QwtScaleArithmetic::floorEps(intv.minValue(), stepSize); const double x2 = QwtScaleArithmetic::ceilEps(intv.maxValue(), stepSize); return pow10(QwtDoubleInterval(x1, x2)); } /*! Return the interval [log10(interval.minValue(), log10(interval.maxValue] */ QwtDoubleInterval QwtLog10ScaleEngine::log10( const QwtDoubleInterval &interval) const { return QwtDoubleInterval(::log10(interval.minValue()), ::log10(interval.maxValue())); } /*! Return the interval [pow10(interval.minValue(), pow10(interval.maxValue] */ QwtDoubleInterval QwtLog10ScaleEngine::pow10( const QwtDoubleInterval &interval) const { return QwtDoubleInterval(pow(10.0, interval.minValue()), pow(10.0, interval.maxValue())); }