// Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // A Cord is a sequence of characters with some unusual access propreties. // A Cord supports efficient insertions and deletions at the start and end of // the byte sequence, but random access reads are slower, and random access // modifications are not supported by the API. Cord also provides cheap copies // (using a copy-on-write strategy) and cheap substring operations. // // Thread safety // ------------- // Cord has the same thread-safety properties as many other types like // std::string, std::vector<>, int, etc -- it is thread-compatible. In // particular, if no thread may call a non-const method, then it is safe to // concurrently call const methods. Copying a Cord produces a new instance that // can be used concurrently with the original in arbitrary ways. // // Implementation is similar to the "Ropes" described in: // Ropes: An alternative to strings // Hans J. Boehm, Russ Atkinson, Michael Plass // Software Practice and Experience, December 1995 #ifndef ABSL_STRINGS_CORD_H_ #define ABSL_STRINGS_CORD_H_ #include #include #include #include #include #include #include #include "absl/base/internal/endian.h" #include "absl/base/internal/invoke.h" #include "absl/base/internal/per_thread_tls.h" #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/meta/type_traits.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/resize_uninitialized.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN class Cord; class CordTestPeer; template Cord MakeCordFromExternal(absl::string_view, Releaser&&); void CopyCordToString(const Cord& src, std::string* dst); namespace hash_internal { template H HashFragmentedCord(H, const Cord&); } // A Cord is a sequence of characters. class Cord { private: template using EnableIfString = absl::enable_if_t::value, int>; public: // -------------------------------------------------------------------- // Constructors, destructors and helper factories // Create an empty cord constexpr Cord() noexcept; // Cord is copyable and efficiently movable. // The moved-from state is valid but unspecified. Cord(const Cord& src); Cord(Cord&& src) noexcept; Cord& operator=(const Cord& x); Cord& operator=(Cord&& x) noexcept; // Create a cord out of "src". This constructor is explicit on // purpose so that people do not get automatic type conversions. explicit Cord(absl::string_view src); Cord& operator=(absl::string_view src); // These are templated to avoid ambiguities for types that are convertible to // both `absl::string_view` and `std::string`, such as `const char*`. // // Note that these functions reserve the right to reuse the `string&&`'s // memory and that they will do so in the future. template = 0> explicit Cord(T&& src) : Cord(absl::string_view(src)) {} template = 0> Cord& operator=(T&& src); // Destroy the cord ~Cord() { if (contents_.is_tree()) DestroyCordSlow(); } // Creates a Cord that takes ownership of external memory. The contents of // `data` are not copied. // // This function takes a callable that is invoked when all Cords are // finished with `data`. The data must remain live and unchanging until the // releaser is called. The requirements for the releaser are that it: // * is move constructible, // * supports `void operator()(absl::string_view) const`, // * does not have alignment requirement greater than what is guaranteed by // ::operator new. This is dictated by alignof(std::max_align_t) before // C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or // it is supported by the implementation. // // Example: // // Cord MakeCord(BlockPool* pool) { // Block* block = pool->NewBlock(); // FillBlock(block); // return absl::MakeCordFromExternal( // block->ToStringView(), // [pool, block](absl::string_view /*ignored*/) { // pool->FreeBlock(block); // }); // } // // WARNING: It's likely a bug if your releaser doesn't do anything. // For example, consider the following: // // void Foo(const char* buffer, int len) { // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), // [](absl::string_view) {}); // // // BUG: If Bar() copies its cord for any reason, including keeping a // // substring of it, the lifetime of buffer might be extended beyond // // when Foo() returns. // Bar(c); // } template friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); // -------------------------------------------------------------------- // Mutations void Clear(); void Append(const Cord& src); void Append(Cord&& src); void Append(absl::string_view src); template = 0> void Append(T&& src); void Prepend(const Cord& src); void Prepend(absl::string_view src); template = 0> void Prepend(T&& src); void RemovePrefix(size_t n); void RemoveSuffix(size_t n); // Returns a new cord representing the subrange [pos, pos + new_size) of // *this. If pos >= size(), the result is empty(). If // (pos + new_size) >= size(), the result is the subrange [pos, size()). Cord Subcord(size_t pos, size_t new_size) const; friend void swap(Cord& x, Cord& y) noexcept; // -------------------------------------------------------------------- // Accessors size_t size() const; bool empty() const; // Returns the approximate number of bytes pinned by this Cord. Note that // Cords that share memory could each be "charged" independently for the same // shared memory. size_t EstimatedMemoryUsage() const; // -------------------------------------------------------------------- // Comparators // Compares 'this' Cord with rhs. This function and its relatives // treat Cords as sequences of unsigned bytes. The comparison is a // straightforward lexicographic comparison. Return value: // -1 'this' Cord is smaller // 0 two Cords are equal // 1 'this' Cord is larger int Compare(absl::string_view rhs) const; int Compare(const Cord& rhs) const; // Does 'this' cord start/end with rhs bool StartsWith(const Cord& rhs) const; bool StartsWith(absl::string_view rhs) const; bool EndsWith(absl::string_view rhs) const; bool EndsWith(const Cord& rhs) const; // -------------------------------------------------------------------- // Conversion to other types explicit operator std::string() const; // Copies the contents from `src` to `*dst`. // // This function optimizes the case of reusing the destination std::string since it // can reuse previously allocated capacity. However, this function does not // guarantee that pointers previously returned by `dst->data()` remain valid // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new // object, prefer to simply use the conversion operator to `std::string`. friend void CopyCordToString(const Cord& src, std::string* dst); // -------------------------------------------------------------------- // Iteration class CharIterator; // Type for iterating over the chunks of a `Cord`. See comments for // `Cord::chunk_begin()`, `Cord::chunk_end()` and `Cord::Chunks()` below for // preferred usage. // // Additional notes: // * The `string_view` returned by dereferencing a valid, non-`end()` // iterator is guaranteed to be non-empty. // * A `ChunkIterator` object is invalidated after any non-const // operation on the `Cord` object over which it iterates. // * Two `ChunkIterator` objects can be equality compared if and only if // they remain valid and iterate over the same `Cord`. // * This is a proxy iterator. This means the `string_view` returned by the // iterator does not live inside the Cord, and its lifetime is limited to // the lifetime of the iterator itself. To help prevent issues, // `ChunkIterator::reference` is not a true reference type and is // equivalent to `value_type`. // * The iterator keeps state that can grow for `Cord`s that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. class ChunkIterator { public: using iterator_category = std::input_iterator_tag; using value_type = absl::string_view; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = value_type; ChunkIterator() = default; ChunkIterator& operator++(); ChunkIterator operator++(int); bool operator==(const ChunkIterator& other) const; bool operator!=(const ChunkIterator& other) const; reference operator*() const; pointer operator->() const; friend class Cord; friend class CharIterator; private: // Constructs a `begin()` iterator from `cord`. explicit ChunkIterator(const Cord* cord); // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than // `current_chunk_.size()`. void RemoveChunkPrefix(size_t n); Cord AdvanceAndReadBytes(size_t n); void AdvanceBytes(size_t n); // Iterates `n` bytes, where `n` is expected to be greater than or equal to // `current_chunk_.size()`. void AdvanceBytesSlowPath(size_t n); // A view into bytes of the current `CordRep`. It may only be a view to a // suffix of bytes if this is being used by `CharIterator`. absl::string_view current_chunk_; // The current leaf, or `nullptr` if the iterator points to short data. // If the current chunk is a substring node, current_leaf_ points to the // underlying flat or external node. absl::cord_internal::CordRep* current_leaf_ = nullptr; // The number of bytes left in the `Cord` over which we are iterating. size_t bytes_remaining_ = 0; absl::InlinedVector stack_of_right_children_; }; // Returns an iterator to the first chunk of the `Cord`. // // This is useful for getting a `ChunkIterator` outside the context of a // range-based for-loop (in which case see `Cord::Chunks()` below). // // Example: // // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, // absl::string_view s) { // return std::find(c.chunk_begin(), c.chunk_end(), s); // } ChunkIterator chunk_begin() const; // Returns an iterator one increment past the last chunk of the `Cord`. ChunkIterator chunk_end() const; // Convenience wrapper over `Cord::chunk_begin()` and `Cord::chunk_end()` to // enable range-based for-loop iteration over `Cord` chunks. // // Prefer to use `Cord::Chunks()` below instead of constructing this directly. class ChunkRange { public: explicit ChunkRange(const Cord* cord) : cord_(cord) {} ChunkIterator begin() const; ChunkIterator end() const; private: const Cord* cord_; }; // Returns a range for iterating over the chunks of a `Cord` with a // range-based for-loop. // // Example: // // void ProcessChunks(const Cord& cord) { // for (absl::string_view chunk : cord.Chunks()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (absl::string_view chunk : CordFactory().Chunks()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } ChunkRange Chunks() const; // Type for iterating over the characters of a `Cord`. See comments for // `Cord::char_begin()`, `Cord::char_end()` and `Cord::Chars()` below for // preferred usage. // // Additional notes: // * A `CharIterator` object is invalidated after any non-const // operation on the `Cord` object over which it iterates. // * Two `CharIterator` objects can be equality compared if and only if // they remain valid and iterate over the same `Cord`. // * The iterator keeps state that can grow for `Cord`s that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. // * This type cannot be a forward iterator because a `Cord` can reuse // sections of memory. This violates the requirement that if dereferencing // two iterators returns the same object, the iterators must compare // equal. class CharIterator { public: using iterator_category = std::input_iterator_tag; using value_type = char; using difference_type = ptrdiff_t; using pointer = const char*; using reference = const char&; CharIterator() = default; CharIterator& operator++(); CharIterator operator++(int); bool operator==(const CharIterator& other) const; bool operator!=(const CharIterator& other) const; reference operator*() const; pointer operator->() const; friend Cord; private: explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} ChunkIterator chunk_iterator_; }; // Advances `*it` by `n_bytes` and returns the bytes passed as a `Cord`. // // `n_bytes` must be less than or equal to the number of bytes remaining for // iteration. Otherwise the behavior is undefined. It is valid to pass // `char_end()` and 0. static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); // Advances `*it` by `n_bytes`. // // `n_bytes` must be less than or equal to the number of bytes remaining for // iteration. Otherwise the behavior is undefined. It is valid to pass // `char_end()` and 0. static void Advance(CharIterator* it, size_t n_bytes); // Returns the longest contiguous view starting at the iterator's position. // // `it` must be dereferenceable. static absl::string_view ChunkRemaining(const CharIterator& it); // Returns an iterator to the first character of the `Cord`. CharIterator char_begin() const; // Returns an iterator to one past the last character of the `Cord`. CharIterator char_end() const; // Convenience wrapper over `Cord::char_begin()` and `Cord::char_end()` to // enable range-based for-loop iterator over the characters of a `Cord`. // // Prefer to use `Cord::Chars()` below instead of constructing this directly. class CharRange { public: explicit CharRange(const Cord* cord) : cord_(cord) {} CharIterator begin() const; CharIterator end() const; private: const Cord* cord_; }; // Returns a range for iterating over the characters of a `Cord` with a // range-based for-loop. // // Example: // // void ProcessCord(const Cord& cord) { // for (char c : cord.Chars()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (char c : CordFactory().Chars()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } CharRange Chars() const; // -------------------------------------------------------------------- // Miscellaneous // Get the "i"th character of 'this' and return it. // NOTE: This routine is reasonably efficient. It is roughly // logarithmic in the number of nodes that make up the cord. Still, // if you need to iterate over the contents of a cord, you should // use a CharIterator/CordIterator rather than call operator[] or Get() // repeatedly in a loop. // // REQUIRES: 0 <= i < size() char operator[](size_t i) const; // Flattens the cord into a single array and returns a view of the data. // // If the cord was already flat, the contents are not modified. absl::string_view Flatten(); private: friend class CordTestPeer; template friend H absl::hash_internal::HashFragmentedCord(H, const Cord&); friend bool operator==(const Cord& lhs, const Cord& rhs); friend bool operator==(const Cord& lhs, absl::string_view rhs); // Call the provided function once for each cord chunk, in order. Unlike // Chunks(), this API will not allocate memory. void ForEachChunk(absl::FunctionRef) const; // Allocates new contiguous storage for the contents of the cord. This is // called by Flatten() when the cord was not already flat. absl::string_view FlattenSlowPath(); // Actual cord contents are hidden inside the following simple // class so that we can isolate the bulk of cord.cc from changes // to the representation. // // InlineRep holds either either a tree pointer, or an array of kMaxInline // bytes. class InlineRep { public: static const unsigned char kMaxInline = 15; static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); // Tag byte & kMaxInline means we are storing a pointer. static const unsigned char kTreeFlag = 1 << 4; // Tag byte & kProfiledFlag means we are profiling the Cord. static const unsigned char kProfiledFlag = 1 << 5; constexpr InlineRep() : data_{} {} InlineRep(const InlineRep& src); InlineRep(InlineRep&& src); InlineRep& operator=(const InlineRep& src); InlineRep& operator=(InlineRep&& src) noexcept; void Swap(InlineRep* rhs); bool empty() const; size_t size() const; const char* data() const; // Returns nullptr if holding pointer void set_data(const char* data, size_t n, bool nullify_tail); // Discards pointer, if any char* set_data(size_t n); // Write data to the result // Returns nullptr if holding bytes absl::cord_internal::CordRep* tree() const; // Discards old pointer, if any void set_tree(absl::cord_internal::CordRep* rep); // Replaces a tree with a new root. This is faster than set_tree, but it // should only be used when it's clear that the old rep was a tree. void replace_tree(absl::cord_internal::CordRep* rep); // Returns non-null iff was holding a pointer absl::cord_internal::CordRep* clear(); // Convert to pointer if necessary absl::cord_internal::CordRep* force_tree(size_t extra_hint); void reduce_size(size_t n); // REQUIRES: holding data void remove_prefix(size_t n); // REQUIRES: holding data void AppendArray(const char* src_data, size_t src_size); absl::string_view FindFlatStartPiece() const; void AppendTree(absl::cord_internal::CordRep* tree); void PrependTree(absl::cord_internal::CordRep* tree); void GetAppendRegion(char** region, size_t* size, size_t max_length); void GetAppendRegion(char** region, size_t* size); bool IsSame(const InlineRep& other) const { return memcmp(data_, other.data_, sizeof(data_)) == 0; } int BitwiseCompare(const InlineRep& other) const { uint64_t x, y; // Use memcpy to avoid anti-aliasing issues. memcpy(&x, data_, sizeof(x)); memcpy(&y, other.data_, sizeof(y)); if (x == y) { memcpy(&x, data_ + 8, sizeof(x)); memcpy(&y, other.data_ + 8, sizeof(y)); if (x == y) return 0; } return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) ? -1 : 1; } void CopyTo(std::string* dst) const { // memcpy is much faster when operating on a known size. On most supported // platforms, the small std::string optimization is large enough that resizing // to 15 bytes does not cause a memory allocation. absl::strings_internal::STLStringResizeUninitialized(dst, sizeof(data_) - 1); memcpy(&(*dst)[0], data_, sizeof(data_) - 1); // erase is faster than resize because the logic for memory allocation is // not needed. dst->erase(data_[kMaxInline]); } // Copies the inline contents into `dst`. Assumes the cord is not empty. void CopyToArray(char* dst) const; bool is_tree() const { return data_[kMaxInline] > kMaxInline; } private: friend class Cord; void AssignSlow(const InlineRep& src); // Unrefs the tree, stops profiling, and zeroes the contents void ClearSlow(); // If the data has length <= kMaxInline, we store it in data_[0..len-1], // and store the length in data_[kMaxInline]. Else we store it in a tree // and store a pointer to that tree in data_[0..sizeof(CordRep*)-1]. alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1]; }; InlineRep contents_; // Helper for MemoryUsage() static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep); // Helper for GetFlat() static bool GetFlatAux(absl::cord_internal::CordRep* rep, absl::string_view* fragment); // Helper for ForEachChunk() static void ForEachChunkAux( absl::cord_internal::CordRep* rep, absl::FunctionRef callback); // The destructor for non-empty Cords. void DestroyCordSlow(); // Out-of-line implementation of slower parts of logic. void CopyToArraySlowPath(char* dst) const; int CompareSlowPath(absl::string_view rhs, size_t compared_size, size_t size_to_compare) const; int CompareSlowPath(const Cord& rhs, size_t compared_size, size_t size_to_compare) const; bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; int CompareImpl(const Cord& rhs) const; template friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, size_t size_to_compare); static absl::string_view GetFirstChunk(const Cord& c); static absl::string_view GetFirstChunk(absl::string_view sv); // Returns a new reference to contents_.tree(), or steals an existing // reference if called on an rvalue. absl::cord_internal::CordRep* TakeRep() const&; absl::cord_internal::CordRep* TakeRep() &&; // Helper for Append() template void AppendImpl(C&& src); }; ABSL_NAMESPACE_END } // namespace absl namespace absl { ABSL_NAMESPACE_BEGIN // allow a Cord to be logged extern std::ostream& operator<<(std::ostream& out, const Cord& cord); // ------------------------------------------------------------------ // Internal details follow. Clients should ignore. namespace cord_internal { // Fast implementation of memmove for up to 15 bytes. This implementation is // safe for overlapping regions. If nullify_tail is true, the destination is // padded with '\0' up to 16 bytes. inline void SmallMemmove(char* dst, const char* src, size_t n, bool nullify_tail = false) { if (n >= 8) { assert(n <= 16); uint64_t buf1; uint64_t buf2; memcpy(&buf1, src, 8); memcpy(&buf2, src + n - 8, 8); if (nullify_tail) { memset(dst + 8, 0, 8); } memcpy(dst, &buf1, 8); memcpy(dst + n - 8, &buf2, 8); } else if (n >= 4) { uint32_t buf1; uint32_t buf2; memcpy(&buf1, src, 4); memcpy(&buf2, src + n - 4, 4); if (nullify_tail) { memset(dst + 4, 0, 4); memset(dst + 8, 0, 8); } memcpy(dst, &buf1, 4); memcpy(dst + n - 4, &buf2, 4); } else { if (n != 0) { dst[0] = src[0]; dst[n / 2] = src[n / 2]; dst[n - 1] = src[n - 1]; } if (nullify_tail) { memset(dst + 8, 0, 8); memset(dst + n, 0, 8); } } } struct ExternalRepReleaserPair { CordRep* rep; void* releaser_address; }; // Allocates a new external `CordRep` and returns a pointer to it and a pointer // to `releaser_size` bytes where the desired releaser can be constructed. // Expects `data` to be non-empty. ExternalRepReleaserPair NewExternalWithUninitializedReleaser( absl::string_view data, ExternalReleaserInvoker invoker, size_t releaser_size); // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer // to it, or `nullptr` if `data` was empty. template // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { static_assert( #if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__, #else alignof(Releaser) <= alignof(max_align_t), #endif "Releasers with alignment requirement greater than what is returned by " "default `::operator new()` are not supported."); using ReleaserType = absl::decay_t; if (data.empty()) { // Never create empty external nodes. ::absl::base_internal::Invoke( ReleaserType(std::forward(releaser)), data); return nullptr; } auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) { auto* my_releaser = static_cast(type_erased_releaser); ::absl::base_internal::Invoke(std::move(*my_releaser), d); my_releaser->~ReleaserType(); return sizeof(Releaser); }; ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser( data, releaser_invoker, sizeof(releaser)); ::new (external.releaser_address) ReleaserType(std::forward(releaser)); return external.rep; } // Overload for function reference types that dispatches using a function // pointer because there are no `alignof()` or `sizeof()` a function reference. // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. inline CordRep* NewExternalRep(absl::string_view data, void (&releaser)(absl::string_view)) { return NewExternalRep(data, &releaser); } } // namespace cord_internal template Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { Cord cord; cord.contents_.set_tree(::absl::cord_internal::NewExternalRep( data, std::forward(releaser))); return cord; } inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) { cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); } inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) { memcpy(data_, src.data_, sizeof(data_)); memset(src.data_, 0, sizeof(data_)); } inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { if (this == &src) { return *this; } if (!is_tree() && !src.is_tree()) { cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); return *this; } AssignSlow(src); return *this; } inline Cord::InlineRep& Cord::InlineRep::operator=( Cord::InlineRep&& src) noexcept { if (is_tree()) { ClearSlow(); } memcpy(data_, src.data_, sizeof(data_)); memset(src.data_, 0, sizeof(data_)); return *this; } inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { if (rhs == this) { return; } Cord::InlineRep tmp; cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_)); cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_)); cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_)); } inline const char* Cord::InlineRep::data() const { return is_tree() ? nullptr : data_; } inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { if (is_tree()) { absl::cord_internal::CordRep* rep; memcpy(&rep, data_, sizeof(rep)); return rep; } else { return nullptr; } } inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; } inline size_t Cord::InlineRep::size() const { const char tag = data_[kMaxInline]; if (tag <= kMaxInline) return tag; return static_cast(tree()->length); } inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) { if (rep == nullptr) { memset(data_, 0, sizeof(data_)); } else { bool was_tree = is_tree(); memcpy(data_, &rep, sizeof(rep)); memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); if (!was_tree) { data_[kMaxInline] = kTreeFlag; } } } inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) { ABSL_ASSERT(is_tree()); if (ABSL_PREDICT_FALSE(rep == nullptr)) { set_tree(rep); return; } memcpy(data_, &rep, sizeof(rep)); memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); } inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { const char tag = data_[kMaxInline]; absl::cord_internal::CordRep* result = nullptr; if (tag > kMaxInline) { memcpy(&result, data_, sizeof(result)); } memset(data_, 0, sizeof(data_)); // Clear the cord return result; } inline void Cord::InlineRep::CopyToArray(char* dst) const { assert(!is_tree()); size_t n = data_[kMaxInline]; assert(n != 0); cord_internal::SmallMemmove(dst, data_, n); } constexpr inline Cord::Cord() noexcept {} inline Cord& Cord::operator=(const Cord& x) { contents_ = x.contents_; return *this; } inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} inline Cord& Cord::operator=(Cord&& x) noexcept { contents_ = std::move(x.contents_); return *this; } template > inline Cord& Cord::operator=(T&& src) { *this = absl::string_view(src); return *this; } inline size_t Cord::size() const { // Length is 1st field in str.rep_ return contents_.size(); } inline bool Cord::empty() const { return contents_.empty(); } inline size_t Cord::EstimatedMemoryUsage() const { size_t result = sizeof(Cord); if (const absl::cord_internal::CordRep* rep = contents_.tree()) { result += MemoryUsageAux(rep); } return result; } inline absl::string_view Cord::Flatten() { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { return absl::string_view(contents_.data(), contents_.size()); } else { absl::string_view already_flat_contents; if (GetFlatAux(rep, &already_flat_contents)) { return already_flat_contents; } } return FlattenSlowPath(); } inline void Cord::Append(absl::string_view src) { contents_.AppendArray(src.data(), src.size()); } template > inline void Cord::Append(T&& src) { // Note that this function reserves the right to reuse the `string&&`'s // memory and that it will do so in the future. Append(absl::string_view(src)); } template > inline void Cord::Prepend(T&& src) { // Note that this function reserves the right to reuse the `string&&`'s // memory and that it will do so in the future. Prepend(absl::string_view(src)); } inline int Cord::Compare(const Cord& rhs) const { if (!contents_.is_tree() && !rhs.contents_.is_tree()) { return contents_.BitwiseCompare(rhs.contents_); } return CompareImpl(rhs); } // Does 'this' cord start/end with rhs inline bool Cord::StartsWith(const Cord& rhs) const { if (contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline bool Cord::StartsWith(absl::string_view rhs) const { size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) : bytes_remaining_(cord->size()) { if (cord->empty()) return; if (cord->contents_.is_tree()) { stack_of_right_children_.push_back(cord->contents_.tree()); operator++(); } else { current_chunk_ = absl::string_view(cord->contents_.data(), cord->size()); } } inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { ChunkIterator tmp(*this); operator++(); return tmp; } inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { return bytes_remaining_ == other.bytes_remaining_; } inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { return !(*this == other); } inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { assert(bytes_remaining_ != 0); return current_chunk_; } inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { assert(bytes_remaining_ != 0); return ¤t_chunk_; } inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { assert(n < current_chunk_.size()); current_chunk_.remove_prefix(n); bytes_remaining_ -= n; } inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { RemoveChunkPrefix(n); } else if (n != 0) { AdvanceBytesSlowPath(n); } } inline Cord::ChunkIterator Cord::chunk_begin() const { return ChunkIterator(this); } inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } inline Cord::ChunkIterator Cord::ChunkRange::begin() const { return cord_->chunk_begin(); } inline Cord::ChunkIterator Cord::ChunkRange::end() const { return cord_->chunk_end(); } inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } inline Cord::CharIterator& Cord::CharIterator::operator++() { if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { chunk_iterator_.RemoveChunkPrefix(1); } else { ++chunk_iterator_; } return *this; } inline Cord::CharIterator Cord::CharIterator::operator++(int) { CharIterator tmp(*this); operator++(); return tmp; } inline bool Cord::CharIterator::operator==(const CharIterator& other) const { return chunk_iterator_ == other.chunk_iterator_; } inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { return !(*this == other); } inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { return *chunk_iterator_->data(); } inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { return chunk_iterator_->data(); } inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { assert(it != nullptr); return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); } inline void Cord::Advance(CharIterator* it, size_t n_bytes) { assert(it != nullptr); it->chunk_iterator_.AdvanceBytes(n_bytes); } inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { return *it.chunk_iterator_; } inline Cord::CharIterator Cord::char_begin() const { return CharIterator(this); } inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } inline Cord::CharIterator Cord::CharRange::begin() const { return cord_->char_begin(); } inline Cord::CharIterator Cord::CharRange::end() const { return cord_->char_end(); } inline Cord::CharRange Cord::Chars() const { return CharRange(this); } inline void Cord::ForEachChunk( absl::FunctionRef callback) const { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { callback(absl::string_view(contents_.data(), contents_.size())); } else { return ForEachChunkAux(rep, callback); } } // Nonmember Cord-to-Cord relational operarators. inline bool operator==(const Cord& lhs, const Cord& rhs) { if (lhs.contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (lhs.size() != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, const Cord& y) { return x.Compare(y) < 0; } inline bool operator>(const Cord& x, const Cord& y) { return x.Compare(y) > 0; } inline bool operator<=(const Cord& x, const Cord& y) { return x.Compare(y) <= 0; } inline bool operator>=(const Cord& x, const Cord& y) { return x.Compare(y) >= 0; } // Nonmember Cord-to-absl::string_view relational operators. // // Due to implicit conversions, these also enable comparisons of Cord with // with std::string, ::string, and const char*. inline bool operator==(const Cord& lhs, absl::string_view rhs) { size_t lhs_size = lhs.size(); size_t rhs_size = rhs.size(); if (lhs_size != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, absl::string_view y) { return x.Compare(y) < 0; } inline bool operator<(absl::string_view x, const Cord& y) { return y.Compare(x) > 0; } inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } // Overload of swap for Cord. The use of non-const references is // required. :( inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); } // Some internals exposed to test code. namespace strings_internal { class CordTestAccess { public: static size_t FlatOverhead(); static size_t MaxFlatLength(); static size_t SizeofCordRepConcat(); static size_t SizeofCordRepExternal(); static size_t SizeofCordRepSubstring(); static size_t FlatTagToLength(uint8_t tag); static uint8_t LengthToTag(size_t s); }; } // namespace strings_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STRINGS_CORD_H_