// Copyright 2011 Hakan Kjellerstrand hakank@gmail.com // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package com.google.ortools.examples; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.io.*; import java.text.*; import java.util.*; public class MagicSquare { static { System.loadLibrary("jniortools"); } /** Solves the Magic Square problem. See http://www.hakank.org/google_or_tools/magic_square.py */ private static void solve(int n, int num) { Solver solver = new Solver("MagicSquare"); System.out.println("n: " + n); // // variables // IntVar[][] x = new IntVar[n][n]; // for the branching IntVar[] x_flat = new IntVar[n * n]; // // constraints // final long s = (n * (n * n + 1)) / 2; System.out.println("s: " + s); // IntVar s = solver.makeIntVar(0, n*n*n, "s"); IntVar[] diag1 = new IntVar[n]; IntVar[] diag2 = new IntVar[n]; for (int i = 0; i < n; i++) { IntVar[] row = new IntVar[n]; for (int j = 0; j < n; j++) { x[i][j] = solver.makeIntVar(1, n * n, "x[" + i + "," + j + "]"); x_flat[i * n + j] = x[i][j]; row[j] = x[i][j]; } // sum row to s solver.addConstraint(solver.makeSumEquality(row, s)); diag1[i] = x[i][i]; diag2[i] = x[i][n - i - 1]; } // sum diagonals to s solver.addConstraint(solver.makeSumEquality(diag1, s)); solver.addConstraint(solver.makeSumEquality(diag2, s)); // sum columns to s for (int j = 0; j < n; j++) { IntVar[] col = new IntVar[n]; for (int i = 0; i < n; i++) { col[i] = x[i][j]; } solver.addConstraint(solver.makeSumEquality(col, s)); } // all are different solver.addConstraint(solver.makeAllDifferent(x_flat)); // symmetry breaking: upper left is 1 // solver.addConstraint(solver.makeEquality(x[0][0], 1)); // // Solve // DecisionBuilder db = solver.makePhase(x_flat, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_CENTER_VALUE); solver.newSearch(db); int c = 0; while (solver.nextSolution()) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(x[i][j].value() + " "); } System.out.println(); } System.out.println(); c++; if (num > 0 && c >= num) { break; } } solver.endSearch(); // Statistics System.out.println(); System.out.println("Solutions: " + solver.solutions()); System.out.println("Failures: " + solver.failures()); System.out.println("Branches: " + solver.branches()); System.out.println("Wall time: " + solver.wallTime() + "ms"); } public static void main(String[] args) throws Exception { int n = 4; int num = 0; if (args.length > 0) { n = Integer.parseInt(args[0]); } if (args.length > 1) { num = Integer.parseInt(args[1]); } MagicSquare.solve(n, num); } }