// // Copyright 2012 Hakan Kjellerstrand // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Google.OrTools.ConstraintSolver; public class PerfectSquareSequence { /** * * Perfect square sequence. * * From 'Fun with num3ers' * "Sequence" * http://benvitale-funwithnum3ers.blogspot.com/2010/11/sequence.html * """ * If we take the numbers from 1 to 15 * (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) * and rearrange them in such an order that any two consecutive * numbers in the sequence add up to a perfect square, we get, * * 8 1 15 10 6 3 13 12 4 5 11 14 2 7 9 * 9 16 25 16 9 16 25 16 9 16 25 16 9 16 * * * I ask the readers the following: * * Can you take the numbers from 1 to 25 to produce such an arrangement? * How about the numbers from 1 to 100? * """ * * Via http://wildaboutmath.com/2010/11/26/wild-about-math-bloggers-111910 * * * Also see http://www.hakank.org/or-tools/perfect_square_sequence.py * */ private static int Solve(int n = 15, int print_solutions=1, int show_num_sols=0) { Solver solver = new Solver("PerfectSquareSequence"); IEnumerable RANGE = Enumerable.Range(0, n); // create the table of possible squares int[] squares = new int[n-1]; for(int i = 1; i < n; i++) { squares[i-1] = i*i; } // // Decision variables // IntVar[] x = solver.MakeIntVarArray(n, 1, n, "x"); // // Constraints // solver.Add(x.AllDifferent()); for(int i = 1; i < n; i++) { solver.Add((x[i-1]+x[i]).Member(squares)); } // symmetry breaking solver.Add(x[0] < x[n-1]); // // Search // DecisionBuilder db = solver.MakePhase(x, Solver.CHOOSE_FIRST_UNBOUND, Solver.INT_VALUE_DEFAULT); solver.NewSearch(db); int num_solutions = 0; while (solver.NextSolution()) { num_solutions++; if (print_solutions > 0) { Console.Write("x: "); foreach(int i in RANGE) { Console.Write(x[i].Value() + " "); } Console.WriteLine(); } if (show_num_sols > 0 && num_solutions >= show_num_sols) { break; } } if (print_solutions > 0) { Console.WriteLine("\nSolutions: {0}", solver.Solutions()); Console.WriteLine("WallTime: {0}ms", solver.WallTime()); Console.WriteLine("Failures: {0}", solver.Failures()); Console.WriteLine("Branches: {0} ", solver.Branches()); } solver.EndSearch(); return num_solutions; } public static void Main(String[] args) { int n = 15; if (args.Length > 0) { n = Convert.ToInt32(args[0]); } if (n == 0) { for(int i = 2; i < 100; i++) { int num_solutions = Solve(i, 0, 0); Console.WriteLine("{0}: {1} solution(s)", i, num_solutions); } } else { int num_solutions = Solve(n); Console.WriteLine("{0}: {1} solution(s)", n, num_solutions); } } }