// // Copyright 2012 Hakan Kjellerstrand // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections; using System.Collections.Generic; using System.Linq; using Google.OrTools.ConstraintSolver; public class MagicSquareAndCards { /** * * Magic squares and cards problem. * * Martin Gardner (July 1971) * """ * Allowing duplicates values, what is the largest constant sum for an order-3 * magic square that can be formed with nine cards from the deck. * """ * * * Also see http://www.hakank.org/or-tools/magic_square_and_cards.py * */ private static void Solve(int n=3) { Solver solver = new Solver("MagicSquareAndCards"); IEnumerable RANGE = Enumerable.Range(0, n); // // Decision variables // IntVar[,] x = solver.MakeIntVarMatrix(n, n, 1, 13, "x"); IntVar[] x_flat = x.Flatten(); IntVar s = solver.MakeIntVar(1, 13*4, "s"); IntVar[] counts = solver.MakeIntVarArray(14, 0, 4, "counts"); // // Constraints // solver.Add(x_flat.Distribute(counts)); // the standard magic square constraints (sans all_different) foreach(int i in RANGE) { // rows solver.Add( (from j in RANGE select x[i,j]).ToArray().Sum() == s); // columns solver.Add( (from j in RANGE select x[j,i]).ToArray().Sum() == s); } // diagonals solver.Add( (from i in RANGE select x[i,i]).ToArray().Sum() == s); solver.Add( (from i in RANGE select x[i,n-i-1]).ToArray().Sum() == s); // redundant constraint solver.Add(counts.Sum() == n*n); // // Objective // OptimizeVar obj = s.Maximize(1); // // Search // DecisionBuilder db = solver.MakePhase(x_flat, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MAX_VALUE); solver.NewSearch(db, obj); while (solver.NextSolution()) { Console.WriteLine("s: {0}", s.Value()); Console.Write("counts:"); for(int i = 0; i < 14; i++) { Console.Write(counts[i].Value() + " "); } Console.WriteLine(); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { Console.Write(x[i,j].Value() + " "); } Console.WriteLine(); } Console.WriteLine(); } Console.WriteLine("\nSolutions: {0}", solver.Solutions()); Console.WriteLine("WallTime: {0}ms", solver.WallTime()); Console.WriteLine("Failures: {0}", solver.Failures()); Console.WriteLine("Branches: {0} ", solver.Branches()); solver.EndSearch(); } public static void Main(String[] args) { int n = 3; if (args.Length > 0) { n = Convert.ToInt32(args[0]); } Solve(n); } }