// // Copyright 2012 Hakan Kjellerstrand // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections; using System.IO; using System.Linq; using System.Text.RegularExpressions; using Google.OrTools.ConstraintSolver; public class DudeneyNumbers { private static Constraint ToNum(IntVar[] a, IntVar num, int bbase) { int len = a.Length; IntVar[] tmp = new IntVar[len]; for(int i = 0; i < len; i++) { tmp[i] = (a[i]*(int)Math.Pow(bbase,(len-i-1))).Var(); } return tmp.Sum() == num; } /** * * Dudeney numbers * From Pierre Schaus blog post * Dudeney number * http://cp-is-fun.blogspot.com/2010/09/test-python.html * """ * I discovered yesterday Dudeney Numbers * A Dudeney Numbers is a positive integer that is a perfect cube such that the sum * of its decimal digits is equal to the cube root of the number. There are only six * Dudeney Numbers and those are very easy to find with CP. * I made my first experience with google cp solver so find these numbers (model below) * and must say that I found it very convenient to build CP models in python! * When you take a close look at the line: * solver.Add(sum([10**(n-i-1)*x[i] for i in range(n)]) == nb) * It is difficult to argue that it is very far from dedicated * optimization languages! * """ * * Also see: http://en.wikipedia.org/wiki/Dudeney_number * */ private static void Solve() { Solver solver = new Solver("DudeneyNumbers"); // // data // int n = 6; // // Decision variables // IntVar[] x = solver.MakeIntVarArray(n, 0, 9, "x"); IntVar nb = solver.MakeIntVar(3, (int)Math.Pow(10,n), "nb"); IntVar s = solver.MakeIntVar(1,9*n+1,"s"); // // Constraints // solver.Add(nb == s*s*s); solver.Add(x.Sum() == s); // solver.Add(ToNum(x, nb, 10)); // alternative solver.Add((from i in Enumerable.Range(0, n) select (x[i]*(int)Math.Pow(10,n-i-1)).Var()). ToArray().Sum() == nb); // // Search // DecisionBuilder db = solver.MakePhase(x, Solver.INT_VAR_DEFAULT, Solver.INT_VALUE_DEFAULT); solver.NewSearch(db); while (solver.NextSolution()) { Console.WriteLine(nb.Value()); } Console.WriteLine("\nSolutions: {0}", solver.Solutions()); Console.WriteLine("WallTime: {0}ms", solver.WallTime()); Console.WriteLine("Failures: {0}", solver.Failures()); Console.WriteLine("Branches: {0} ", solver.Branches()); solver.EndSearch(); } public static void Main(String[] args) { Solve(); } }