#include #include #include "snake.h" #include #include #include #include #include #include #include "clipper/clipper.hpp" #define CLIPPER_SCALE 10000 #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" using namespace operations_research; #ifndef NDEBUG //#define SNAKE_SHOW_TIME #endif namespace bg = boost::geometry; namespace trans = bg::strategy::transform; BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian) namespace snake { //========================================================================= // Geometry stuff. //========================================================================= void polygonCenter(const BoostPolygon &polygon, BoostPoint ¢er) { using namespace mapbox; if (polygon.outer().empty()) return; geometry::polygon p; geometry::linear_ring lr1; for (size_t i = 0; i < polygon.outer().size(); ++i) { geometry::point vertex(polygon.outer()[i].get<0>(), polygon.outer()[i].get<1>()); lr1.push_back(vertex); } p.push_back(lr1); geometry::point c = polylabel(p); center.set<0>(c.x); center.set<1>(c.y); } bool minimalBoundingBox(const BoostPolygon &polygon, BoundingBox &minBBox) { /* Find the minimum-area bounding box of a set of 2D points The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates. The first and last points points must be the same, making a closed polygon. This program finds the rotation angles of each edge of the convex polygon, then tests the area of a bounding box aligned with the unique angles in 90 degrees of the 1st Quadrant. Returns the Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version) Results verified using Matlab Copyright (c) 2013, David Butterworth, University of Queensland All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Willow Garage, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ if (polygon.outer().empty() || polygon.outer().size() < 3) return false; BoostPolygon convex_hull; bg::convex_hull(polygon, convex_hull); // cout << "Convex hull: " << bg::wkt(convex_hull) << endl; //# Compute edges (x2-x1,y2-y1) std::vector edges; const auto &convex_hull_outer = convex_hull.outer(); for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) { BoostPoint p1 = convex_hull_outer.at(i); BoostPoint p2 = convex_hull_outer.at(i + 1); double edge_x = p2.get<0>() - p1.get<0>(); double edge_y = p2.get<1>() - p1.get<1>(); edges.push_back(BoostPoint{edge_x, edge_y}); } // cout << "Edges: "; // for (auto e : edges) // cout << e.get<0>() << " " << e.get<1>() << ","; // cout << endl; // Calculate unique edge angles atan2(y/x) double angle_scale = 1e3; std::set angles_long; for (auto vertex : edges) { double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2); angle = angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers angles_long.insert(long(round(angle * angle_scale))); } std::vector edge_angles; for (auto a : angles_long) edge_angles.push_back(double(a) / angle_scale); // cout << "Unique angles: "; // for (auto e : edge_angles) // cout << e*180/M_PI << ","; // cout << endl; double min_area = std::numeric_limits::infinity(); // Test each angle to find bounding box with smallest area // print "Testing", len(edge_angles), "possible rotations for bounding box... // \n" for (double angle : edge_angles) { trans::rotate_transformer rotate(angle * 180 / M_PI); BoostPolygon hull_rotated; bg::transform(convex_hull, hull_rotated, rotate); // cout << "Convex hull rotated: " << bg::wkt(hull_rotated) // << endl; bg::model::box box; bg::envelope(hull_rotated, box); // cout << "Bounding box: " << // bg::wkt>(box) << endl; //# print "Rotated hull points are \n", rot_points BoostPoint min_corner = box.min_corner(); BoostPoint max_corner = box.max_corner(); double min_x = min_corner.get<0>(); double max_x = max_corner.get<0>(); double min_y = min_corner.get<1>(); double max_y = max_corner.get<1>(); // cout << "min_x: " << min_x << endl; // cout << "max_x: " << max_x << endl; // cout << "min_y: " << min_y << endl; // cout << "max_y: " << max_y << endl; // Calculate height/width/area of this bounding rectangle double width = max_x - min_x; double height = max_y - min_y; double area = width * height; // cout << "Width: " << width << endl; // cout << "Height: " << height << endl; // cout << "area: " << area << endl; // cout << "angle: " << angle*180/M_PI << endl; // Store the smallest rect found first (a simple convex hull might have 2 // answers with same area) if (area < min_area) { min_area = area; minBBox.angle = angle; minBBox.width = width; minBBox.height = height; minBBox.corners.clear(); minBBox.corners.outer().push_back(BoostPoint{min_x, min_y}); minBBox.corners.outer().push_back(BoostPoint{min_x, max_y}); minBBox.corners.outer().push_back(BoostPoint{max_x, max_y}); minBBox.corners.outer().push_back(BoostPoint{max_x, min_y}); minBBox.corners.outer().push_back(BoostPoint{min_x, min_y}); } // cout << endl << endl; } // Transform corners of minimal bounding box. trans::rotate_transformer rotate(-minBBox.angle * 180 / M_PI); BoostPolygon rotated_polygon; bg::transform(minBBox.corners, rotated_polygon, rotate); minBBox.corners = rotated_polygon; return true; } void offsetPolygon(const BoostPolygon &polygon, BoostPolygon &polygonOffset, double offset) { bg::strategy::buffer::distance_symmetric distance_strategy(offset); bg::strategy::buffer::join_miter join_strategy(3); bg::strategy::buffer::end_flat end_strategy; bg::strategy::buffer::point_square point_strategy; bg::strategy::buffer::side_straight side_strategy; bg::model::multi_polygon result; bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy, end_strategy, point_strategy); if (result.size() > 0) polygonOffset = result[0]; } void graphFromPolygon(const BoostPolygon &polygon, const BoostLineString &vertices, Matrix &graph) { size_t n = graph.getN(); for (size_t i = 0; i < n; ++i) { BoostPoint v1 = vertices[i]; for (size_t j = i + 1; j < n; ++j) { BoostPoint v2 = vertices[j]; BoostLineString path{v1, v2}; double distance = 0; if (!bg::within(path, polygon)) distance = std::numeric_limits::infinity(); else distance = bg::length(path); graph.set(i, j, distance); graph.set(j, i, distance); } } } bool dijkstraAlgorithm( const size_t numElements, size_t startIndex, size_t endIndex, std::vector &elementPath, std::function distanceDij) { if (startIndex >= numElements || endIndex >= numElements || endIndex == startIndex) { return false; } // Node struct // predecessorIndex is the index of the predecessor node // (nodeList[predecessorIndex]) distance is the distance between the node and // the start node node number is stored by the position in nodeList struct Node { int predecessorIndex = -1; double distance = std::numeric_limits::infinity(); }; // The list with all Nodes (elements) std::vector nodeList(numElements); // This list will be initalized with indices referring to the elements of // nodeList. Elements will be successively remove during the execution of the // Dijkstra Algorithm. std::vector workingSet(numElements); // append elements to node list for (size_t i = 0; i < numElements; ++i) workingSet[i] = i; nodeList[startIndex].distance = 0; // Dijkstra Algorithm // https://de.wikipedia.org/wiki/Dijkstra-Algorithmus while (workingSet.size() > 0) { // serach Node with minimal distance double minDist = std::numeric_limits::infinity(); int minDistIndex_WS = -1; // WS = workinSet for (size_t i = 0; i < workingSet.size(); ++i) { const int nodeIndex = workingSet.at(i); const double dist = nodeList.at(nodeIndex).distance; if (dist < minDist) { minDist = dist; minDistIndex_WS = i; } } if (minDistIndex_WS == -1) return false; size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList workingSet.erase(workingSet.begin() + minDistIndex_WS); if (indexU_NL == endIndex) // shortest path found break; const double distanceU = nodeList.at(indexU_NL).distance; // update distance for (size_t i = 0; i < workingSet.size(); ++i) { int indexV_NL = workingSet[i]; // NL = nodeList Node *v = &nodeList[indexV_NL]; double dist = distanceDij(indexU_NL, indexV_NL); // is ther an alternative path which is shorter? double alternative = distanceU + dist; if (alternative < v->distance) { v->distance = alternative; v->predecessorIndex = indexU_NL; } } } // end Djikstra Algorithm // reverse assemble path int e = endIndex; while (1) { if (e == -1) { if (elementPath[0] == startIndex) // check if starting point was reached break; return false; } elementPath.insert(elementPath.begin(), e); // Update Node e = nodeList[e].predecessorIndex; } return true; } void toDistanceMatrix(Matrix &graph) { size_t n = graph.getN(); auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); }; std::vector path; for (size_t i = 0; i < n; ++i) { for (size_t j = i + 1; j < n; ++j) { double d = graph.get(i, j); if (!std::isinf(d)) continue; path.clear(); bool ret = dijkstraAlgorithm(n, i, j, path, distance); assert(ret); (void)ret; // cout << "(" << i << "," << j << ") d: " << d << endl; // cout << "Path size: " << path.size() << endl; // for (auto idx : path) // cout << idx << " "; // cout << endl; d = 0; for (long k = 0; k < long(path.size()) - 1; ++k) { size_t idx0 = path[k]; size_t idx1 = path[k + 1]; double d0 = graph.get(idx0, idx1); assert(std::isinf(d0) == false); d += d0; } graph.set(i, j, d); graph.set(j, i, d); } } } void shortestPathFromGraph(const Matrix &graph, size_t startIndex, size_t endIndex, std::vector &pathIdx) { if (!std::isinf(graph.get(startIndex, endIndex))) { pathIdx.push_back(startIndex); pathIdx.push_back(endIndex); } else { auto distance = [graph](size_t i, size_t j) { return graph.get(i, j); }; bool ret = dijkstraAlgorithm(graph.getN(), startIndex, endIndex, pathIdx, distance); assert(ret); (void)ret; } //========================================================================= // Scenario calculation. //========================================================================= } Scenario::Scenario() : _tileWidth(5 * bu::si::meter), _tileHeight(5 * bu::si::meter), _minTileArea(0 * bu::si::meter * bu::si::meter), _needsUpdate(true) {} void Scenario::setMeasurementArea(const BoostPolygon &area) { _needsUpdate = true; _mArea = area; } void Scenario::setServiceArea(const BoostPolygon &area) { _needsUpdate = true; _sArea = area; } void Scenario::setCorridor(const BoostPolygon &area) { _needsUpdate = true; _corridor = area; } BoostPolygon &Scenario::measurementArea() { _needsUpdate = true; return _mArea; } BoostPolygon &Scenario::serviceArea() { _needsUpdate = true; return _sArea; } BoostPolygon &Scenario::corridor() { _needsUpdate = true; return _corridor; } const BoundingBox &Scenario::mAreaBoundingBox() const { return _mAreaBoundingBox; } const BoostPolygon &Scenario::measurementArea() const { return _mArea; } const BoostPolygon &Scenario::serviceArea() const { return _sArea; } const BoostPolygon &Scenario::corridor() const { return _corridor; } const BoostPolygon &Scenario::joinedArea() const { return _jArea; } const vector &Scenario::tiles() const { return _tiles; } const BoostLineString &Scenario::tileCenterPoints() const { return _tileCenterPoints; } const BoundingBox &Scenario::measurementAreaBBox() const { return _mAreaBoundingBox; } const BoostPoint &Scenario::homePositon() const { return _homePosition; } bool Scenario::update() { if (!_needsUpdate) return true; bg::correct(_mArea); bg::correct(_sArea); bg::correct(_corridor); polygonCenter(_sArea, _homePosition); if (!_calculateJoinedArea()) return false; if (!_calculateBoundingBox()) return false; if (!_calculateTiles()) return false; _needsUpdate = false; return true; } bool Scenario::_calculateBoundingBox() const { return minimalBoundingBox(_mArea, _mAreaBoundingBox); } /** * Devides the (measurement area) bounding box into tiles and clips it to the * measurement area. * * Devides the (measurement area) bounding box into tiles of width \p tileWidth * and height \p tileHeight. Clips the resulting tiles to the measurement area. * Tiles are rejected, if their area is smaller than \p minTileArea. The * function assumes that \a _mArea and \a _mAreaBoundingBox have correct values. * \see \ref Scenario::_areas2enu() and \ref Scenario::_calculateBoundingBox(). * * @param tileWidth The width (>0) of a tile. * @param tileHeight The heigth (>0) of a tile. * @param minTileArea The minimal area (>0) of a tile. * * @return Returns true if successful. */ bool Scenario::_calculateTiles() const { _tiles.clear(); _tileCenterPoints.clear(); if (_tileWidth <= 0 * bu::si::meter || _tileHeight <= 0 * bu::si::meter || _minTileArea < 0 * bu::si::meter * bu::si::meter) { std::stringstream ss; ss << "Parameters tileWidth (" << _tileWidth << "), tileHeight (" << _tileHeight << "), minTileArea (" << _minTileArea << ") must be positive."; errorString = ss.str(); return false; } double bboxWidth = _mAreaBoundingBox.width; double bboxHeight = _mAreaBoundingBox.height; BoostPoint origin = _mAreaBoundingBox.corners.outer()[0]; // cout << "Origin: " << origin[0] << " " << origin[1] << endl; // Transform _mArea polygon to bounding box coordinate system. trans::rotate_transformer rotate( _mAreaBoundingBox.angle * 180 / M_PI); trans::translate_transformer translate(-origin.get<0>(), -origin.get<1>()); BoostPolygon translated_polygon; BoostPolygon rotated_polygon; boost::geometry::transform(_mArea, translated_polygon, translate); boost::geometry::transform(translated_polygon, rotated_polygon, rotate); bg::correct(rotated_polygon); // cout << bg::wkt(rotated_polygon) << endl; size_t iMax = ceil(bboxWidth / _tileWidth.value()); size_t jMax = ceil(bboxHeight / _tileHeight.value()); if (iMax < 1 || jMax < 1) { std::stringstream ss; ss << "Tile width (" << _tileWidth << ") or tile height (" << _tileHeight << ") to large for measurement area."; errorString = ss.str(); return false; } trans::rotate_transformer rotate_back( -_mAreaBoundingBox.angle * 180 / M_PI); trans::translate_transformer translate_back(origin.get<0>(), origin.get<1>()); for (size_t i = 0; i < iMax; ++i) { double x_min = _tileWidth.value() * i; double x_max = x_min + _tileWidth.value(); for (size_t j = 0; j < jMax; ++j) { double y_min = _tileHeight.value() * j; double y_max = y_min + _tileHeight.value(); BoostPolygon tile_unclipped; tile_unclipped.outer().push_back(BoostPoint{x_min, y_min}); tile_unclipped.outer().push_back(BoostPoint{x_min, y_max}); tile_unclipped.outer().push_back(BoostPoint{x_max, y_max}); tile_unclipped.outer().push_back(BoostPoint{x_max, y_min}); tile_unclipped.outer().push_back(BoostPoint{x_min, y_min}); std::deque boost_tiles; if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles)) continue; for (BoostPolygon t : boost_tiles) { if (bg::area(t) > _minTileArea.value()) { // Transform boost_tile to world coordinate system. BoostPolygon rotated_tile; BoostPolygon translated_tile; boost::geometry::transform(t, rotated_tile, rotate_back); boost::geometry::transform(rotated_tile, translated_tile, translate_back); // Store tile and calculate center point. _tiles.push_back(translated_tile); BoostPoint tile_center; polygonCenter(translated_tile, tile_center); _tileCenterPoints.push_back(tile_center); } } } } if (_tiles.size() < 1) { std::stringstream ss; ss << "No tiles calculated. Is the minTileArea (" << _minTileArea << ") parameter large enough?"; errorString = ss.str(); return false; } return true; } bool Scenario::_calculateJoinedArea() const { _jArea.clear(); // Measurement area and service area overlapping? bool overlapingSerMeas = bg::intersects(_mArea, _sArea) ? true : false; bool corridorValid = _corridor.outer().size() > 0 ? true : false; // Check if corridor is connecting measurement area and service area. bool corridor_is_connection = false; if (corridorValid) { // Corridor overlaping with measurement area? if (bg::intersects(_corridor, _mArea)) { // Corridor overlaping with service area? if (bg::intersects(_corridor, _sArea)) { corridor_is_connection = true; } } } // Are areas joinable? std::deque sol; BoostPolygon partialArea = _mArea; if (overlapingSerMeas) { if (corridor_is_connection) { bg::union_(partialArea, _corridor, sol); } } else if (corridor_is_connection) { bg::union_(partialArea, _corridor, sol); } else { std::stringstream ss; auto printPoint = [&ss](const BoostPoint &p) { ss << " (" << p.get<0>() << ", " << p.get<1>() << ")"; }; ss << "Areas are not overlapping." << std::endl; ss << "Measurement area:"; bg::for_each_point(_mArea, printPoint); ss << std::endl; ss << "Service area:"; bg::for_each_point(_sArea, printPoint); ss << std::endl; ss << "Corridor:"; bg::for_each_point(_corridor, printPoint); ss << std::endl; errorString = ss.str(); return false; } if (sol.size() > 0) { partialArea = sol[0]; sol.clear(); } // Join areas. bg::union_(partialArea, _sArea, sol); if (sol.size() > 0) { _jArea = sol[0]; } else { return false; } return true; } Area Scenario::minTileArea() const { return _minTileArea; } void Scenario::setMinTileArea(Area minTileArea) { if (minTileArea >= 0 * bu::si::meter * bu::si::meter) { _needsUpdate = true; _minTileArea = minTileArea; } } Length Scenario::tileHeight() const { return _tileHeight; } void Scenario::setTileHeight(Length tileHeight) { if (tileHeight > 0 * bu::si::meter) { _needsUpdate = true; _tileHeight = tileHeight; } } Length Scenario::tileWidth() const { return _tileWidth; } void Scenario::setTileWidth(Length tileWidth) { if (tileWidth > 0 * bu::si::meter) { _needsUpdate = true; _tileWidth = tileWidth; } } //========================================================================= // Tile calculation. //========================================================================= bool joinAreas(const std::vector &areas, BoostPolygon &joinedArea) { if (areas.size() < 1) return false; std::deque idxList; for (size_t i = 1; i < areas.size(); ++i) idxList.push_back(i); joinedArea = areas[0]; std::deque sol; while (idxList.size() > 0) { bool success = false; for (auto it = idxList.begin(); it != idxList.end(); ++it) { bg::union_(joinedArea, areas[*it], sol); if (sol.size() > 0) { joinedArea = sol[0]; sol.clear(); idxList.erase(it); success = true; break; } } if (!success) return false; } return true; } BoundingBox::BoundingBox() : width(0), height(0), angle(0) {} void BoundingBox::clear() { width = 0; height = 0; angle = 0; corners.clear(); } bool flight_plan::transectsFromScenario(Length distance, Length minLength, Angle angle, const Scenario &scenario, const Progress &p, flight_plan::Transects &t, string &errorString) { // Rotate measurement area by angle and calculate bounding box. auto &mArea = scenario.measurementArea(); BoostPolygon mAreaRotated; trans::rotate_transformer rotate(angle.value() * 180 / M_PI); bg::transform(mArea, mAreaRotated, rotate); BoostBox box; boost::geometry::envelope(mAreaRotated, box); double x0 = box.min_corner().get<0>(); double y0 = box.min_corner().get<1>(); double x1 = box.max_corner().get<0>(); double y1 = box.max_corner().get<1>(); // Generate transects and convert them to clipper path. size_t num_t = int(ceil((y1 - y0) / distance.value())); // number of transects vector transectsClipper; transectsClipper.reserve(num_t); for (size_t i = 0; i < num_t; ++i) { // calculate transect BoostPoint v1{x0, y0 + i * distance.value()}; BoostPoint v2{x1, y0 + i * distance.value()}; BoostLineString transect; transect.push_back(v1); transect.push_back(v2); // transform back BoostLineString temp_transect; trans::rotate_transformer rotate_back( -angle.value() * 180 / M_PI); bg::transform(transect, temp_transect, rotate_back); // to clipper ClipperLib::IntPoint c1{static_cast( temp_transect[0].get<0>() * CLIPPER_SCALE), static_cast( temp_transect[0].get<1>() * CLIPPER_SCALE)}; ClipperLib::IntPoint c2{static_cast( temp_transect[1].get<0>() * CLIPPER_SCALE), static_cast( temp_transect[1].get<1>() * CLIPPER_SCALE)}; ClipperLib::Path path{c1, c2}; transectsClipper.push_back(path); } if (transectsClipper.size() == 0) { std::stringstream ss; ss << "Not able to generate transects. Parameter: distance = " << distance << std::endl; errorString = ss.str(); return false; } // Convert measurement area to clipper path. ClipperLib::Path mAreaClipper; for (auto vertex : mArea.outer()) { mAreaClipper.push_back(ClipperLib::IntPoint{ static_cast(vertex.get<0>() * CLIPPER_SCALE), static_cast(vertex.get<1>() * CLIPPER_SCALE)}); } // Perform clipping. // Clip transects to measurement area. ClipperLib::Clipper clipper; clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true); clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false); ClipperLib::PolyTree clippedTransecs; clipper.Execute(ClipperLib::ctIntersection, clippedTransecs, ClipperLib::pftNonZero, ClipperLib::pftNonZero); const auto *transects = &clippedTransecs; bool ignoreProgress = p.size() != scenario.tiles().size(); ClipperLib::PolyTree clippedTransecs2; if (!ignoreProgress) { // Calculate processed tiles (_progress[i] == 100) and subtract them from // measurement area. size_t numTiles = p.size(); vector processedTiles; const auto &tiles = scenario.tiles(); for (size_t i = 0; i < numTiles; ++i) { if (p[i] == 100) { processedTiles.push_back(tiles[i]); } } if (processedTiles.size() != numTiles) { vector processedTilesClipper; for (const auto &t : processedTiles) { ClipperLib::Path path; for (const auto &vertex : t.outer()) { path.push_back(ClipperLib::IntPoint{ static_cast(vertex.get<0>() * CLIPPER_SCALE), static_cast(vertex.get<1>() * CLIPPER_SCALE)}); } processedTilesClipper.push_back(path); } // Subtract holes (tiles with measurement_progress == 100) from transects. clipper.Clear(); for (const auto &child : clippedTransecs.Childs) { clipper.AddPath(child->Contour, ClipperLib::ptSubject, false); } clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true); clipper.Execute(ClipperLib::ctDifference, clippedTransecs2, ClipperLib::pftNonZero, ClipperLib::pftNonZero); transects = &clippedTransecs2; } else { // All tiles processed (t.size() not changed). return true; } } // Extract transects from PolyTree and convert them to BoostLineString for (const auto &child : transects->Childs) { const auto &clipperTransect = child->Contour; BoostPoint v1{static_cast(clipperTransect[0].X) / CLIPPER_SCALE, static_cast(clipperTransect[0].Y) / CLIPPER_SCALE}; BoostPoint v2{static_cast(clipperTransect[1].X) / CLIPPER_SCALE, static_cast(clipperTransect[1].Y) / CLIPPER_SCALE}; BoostLineString transect{v1, v2}; if (bg::length(transect) >= minLength.value()) { t.push_back(transect); } } if (t.size() == 0) { std::stringstream ss; ss << "Not able to generate transects. Parameter: minLength = " << minLength << std::endl; errorString = ss.str(); return false; } return true; } struct RoutingDataModel { Matrix distanceMatrix; long numVehicles; RoutingIndexManager::NodeIndex depot; }; void generateRoutingModel(const BoostLineString &vertices, const BoostPolygon &polygonOffset, size_t n0, RoutingDataModel &dataModel, Matrix &graph) { #ifdef SNAKE_SHOW_TIME auto start = std::chrono::high_resolution_clock::now(); #endif graphFromPolygon(polygonOffset, vertices, graph); #ifdef SNAKE_SHOW_TIME auto delta = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start); cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl; #endif Matrix distanceMatrix(graph); #ifdef SNAKE_SHOW_TIME start = std::chrono::high_resolution_clock::now(); #endif toDistanceMatrix(distanceMatrix); #ifdef SNAKE_SHOW_TIME delta = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start); cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl; #endif dataModel.distanceMatrix.setDimension(n0, n0); for (size_t i = 0; i < n0; ++i) { dataModel.distanceMatrix.set(i, i, 0); for (size_t j = i + 1; j < n0; ++j) { dataModel.distanceMatrix.set( i, j, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE)); dataModel.distanceMatrix.set( j, i, int64_t(distanceMatrix.get(i, j) * CLIPPER_SCALE)); } } dataModel.numVehicles = 1; dataModel.depot = 0; } bool flight_plan::route(const BoostPolygon &area, const flight_plan::Transects &transects, Transects &transectsRouted, flight_plan::Route &route, string &errorString) { //======================================= // Route Transects using Google or-tools. //======================================= // Create vertex list; BoostLineString vertices; size_t n0 = 0; for (const auto &t : transects) { n0 += std::min(t.size(), 2); } vertices.reserve(n0); struct TransectInfo { TransectInfo(size_t n, bool f) : index(n), front(f) {} size_t index; bool front; }; std::vector transectInfoList; for (size_t i = 0; i < transects.size(); ++i) { const auto &t = transects[i]; vertices.push_back(t.front()); transectInfoList.push_back(TransectInfo{i, true}); if (t.size() >= 2) { vertices.push_back(t.back()); transectInfoList.push_back(TransectInfo{i, false}); } } for (long i = 0; i < long(area.outer().size()) - 1; ++i) { vertices.push_back(area.outer()[i]); } for (auto &ring : area.inners()) { for (auto &vertex : ring) vertices.push_back(vertex); } size_t n1 = vertices.size(); // Generate routing model. RoutingDataModel dataModel; Matrix connectionGraph(n1, n1); // Offset joined area. BoostPolygon areaOffset; offsetPolygon(area, areaOffset, detail::offsetConstant); #ifdef SNAKE_SHOW_TIME auto start = std::chrono::high_resolution_clock::now(); #endif generateRoutingModel(vertices, areaOffset, n0, dataModel, connectionGraph); #ifdef SNAKE_SHOW_TIME auto delta = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start); cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl; #endif // Create Routing Index Manager. RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles, dataModel.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transitCallbackIndex = routing.RegisterTransitCallback( [&dataModel, &manager](int64 from_index, int64 to_index) -> int64 { // Convert from routing variable Index to distance matrix NodeIndex. auto from_node = manager.IndexToNode(from_index).value(); auto to_node = manager.IndexToNode(to_index).value(); return dataModel.distanceMatrix.get(from_node, to_node); }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Define Constraints (this constraints have a huge impact on the // solving time, improvments could be done, e.g. SearchFilter). #ifdef SNAKE_DEBUG std::cout << "snake::route(): Constraints:" << std::endl; #endif Solver *solver = routing.solver(); size_t index = 0; for (size_t i = 0; i < transects.size(); ++i) { const auto &t = transects[i]; #ifdef SNAKE_DEBUG std::cout << "i = " << i << ": t.size() = " << t.size() << std::endl; #endif if (t.size() >= 2) { auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(index)); auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(index + 1)); auto cond0 = routing.NextVar(idx0)->IsEqual(idx1); auto cond1 = routing.NextVar(idx1)->IsEqual(idx0); auto c = solver->MakeNonEquality(cond0, cond1); solver->AddConstraint(c); #ifdef SNAKE_DEBUG std::cout << "( next(" << index << ") == " << index + 1 << " ) != ( next(" << index + 1 << ") == " << index << " )" << std::endl; #endif index += 2; } else { index += 1; } } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds tMax->set_seconds(10); searchParameters.set_allocated_time_limit(tMax); // Solve the problem. #ifdef SNAKE_SHOW_TIME start = std::chrono::high_resolution_clock::now(); #endif const Assignment *solution = routing.SolveWithParameters(searchParameters); #ifdef SNAKE_SHOW_TIME delta = std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - start); cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl; #endif if (!solution || solution->Size() <= 1) { errorString = "Not able to solve the routing problem."; return false; } // Extract index list from solution. index = routing.Start(0); std::vector route_idx; route_idx.push_back(manager.IndexToNode(index).value()); while (!routing.IsEnd(index)) { index = solution->Value(routing.NextVar(index)); route_idx.push_back(manager.IndexToNode(index).value()); } // Helper Lambda. auto idx2Vertex = [&vertices](const std::vector &idxArray, std::vector &path) { for (auto idx : idxArray) path.push_back(vertices[idx]); }; // Construct route. for (size_t i = 0; i < route_idx.size() - 1; ++i) { size_t idx0 = route_idx[i]; size_t idx1 = route_idx[i + 1]; const auto &info1 = transectInfoList[idx0]; const auto &info2 = transectInfoList[idx1]; if (info1.index == info2.index) { // same transect? if (!info1.front) { // transect reversal needed? BoostLineString reversedTransect; const auto &t = transects[info1.index]; for (auto it = t.end() - 1; it >= t.begin(); --it) { reversedTransect.push_back(*it); } transectsRouted.push_back(reversedTransect); for (auto it = reversedTransect.begin(); it < reversedTransect.end() - 1; ++it) { route.push_back(*it); } } else { const auto &t = transects[info1.index]; for (auto it = t.begin(); it < t.end() - 1; ++it) { route.push_back(*it); } transectsRouted.push_back(t); } } else { std::vector idxList; shortestPathFromGraph(connectionGraph, idx0, idx1, idxList); if (i != route_idx.size() - 2) { idxList.pop_back(); } idx2Vertex(idxList, route); } } return true; } } // namespace snake bool boost::geometry::model::operator==(snake::BoostPoint p1, snake::BoostPoint p2) { return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>()); } bool boost::geometry::model::operator!=(snake::BoostPoint p1, snake::BoostPoint p2) { return !(p1 == p2); }