Commit 687dde15 authored by Don Gagne's avatar Don Gagne

parent 9c21a19a
......@@ -15,18 +15,31 @@
//
// 1) http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
// QGC Note: This file has been slightly modified to prevent possible conflicts with other parts of the system
#include "UTM.h"
#include <math.h>
#define pi 3.14159265358979
/* Ellipsoid model constants (actual values here are for WGS84) */
#define sm_a 6378137.0
#define sm_b 6356752.314
#define sm_EccSquared 6.69437999013e-03
#define UTMScaleFactor 0.9996
// DegToRad
// Converts degrees to radians.
FLOAT DegToRad(FLOAT deg) {
double DegToRad(double deg) {
return (deg / 180.0 * pi);
}
// RadToDeg
// Converts radians to degrees.
FLOAT RadToDeg(FLOAT rad) {
double RadToDeg(double rad) {
return (rad / pi * 180.0);
}
......@@ -46,38 +59,38 @@ FLOAT RadToDeg(FLOAT rad) {
//
// Returns:
// The ellipsoidal distance of the point from the equator, in meters.
FLOAT ArcLengthOfMeridian (FLOAT phi) {
FLOAT alpha, beta, gamma, delta, epsilon, n;
FLOAT result;
double ArcLengthOfMeridian (double phi) {
double alpha, beta, gamma, delta, epsilon, n;
double result;
/* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha */
alpha = ((sm_a + sm_b) / 2.0)
* (1.0 + (POW(n, 2.0) / 4.0) + (POW(n, 4.0) / 64.0));
* (1.0 + (pow(n, 2.0) / 4.0) + (pow(n, 4.0) / 64.0));
/* Precalculate beta */
beta = (-3.0 * n / 2.0) + (9.0 * POW(n, 3.0) / 16.0)
+ (-3.0 * POW(n, 5.0) / 32.0);
beta = (-3.0 * n / 2.0) + (9.0 * pow(n, 3.0) / 16.0)
+ (-3.0 * pow(n, 5.0) / 32.0);
/* Precalculate gamma */
gamma = (15.0 * POW(n, 2.0) / 16.0)
+ (-15.0 * POW(n, 4.0) / 32.0);
gamma = (15.0 * pow(n, 2.0) / 16.0)
+ (-15.0 * pow(n, 4.0) / 32.0);
/* Precalculate delta */
delta = (-35.0 * POW(n, 3.0) / 48.0)
+ (105.0 * POW(n, 5.0) / 256.0);
delta = (-35.0 * pow(n, 3.0) / 48.0)
+ (105.0 * pow(n, 5.0) / 256.0);
/* Precalculate epsilon */
epsilon = (315.0 * POW(n, 4.0) / 512.0);
epsilon = (315.0 * pow(n, 4.0) / 512.0);
/* Now calculate the sum of the series and return */
result = alpha
* (phi + (beta * SIN(2.0 * phi))
+ (gamma * SIN(4.0 * phi))
+ (delta * SIN(6.0 * phi))
+ (epsilon * SIN(8.0 * phi)));
* (phi + (beta * sin(2.0 * phi))
+ (gamma * sin(4.0 * phi))
+ (delta * sin(6.0 * phi))
+ (epsilon * sin(8.0 * phi)));
return result;
}
......@@ -93,9 +106,9 @@ FLOAT ArcLengthOfMeridian (FLOAT phi) {
// Returns:
// The central meridian for the given UTM zone, in radians
// Range of the central meridian is the radian equivalent of [-177,+177].
FLOAT UTMCentralMeridian(int zone) {
FLOAT cmeridian;
cmeridian = DegToRad(-183.0 + ((FLOAT)zone * 6.0));
double UTMCentralMeridian(int zone) {
double cmeridian;
cmeridian = DegToRad(-183.0 + ((double)zone * 6.0));
return cmeridian;
}
......@@ -115,9 +128,9 @@ FLOAT UTMCentralMeridian(int zone) {
//
// Returns:
// The footpoint latitude, in radians.
FLOAT FootpointLatitude(FLOAT y) {
FLOAT y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
FLOAT result;
double FootpointLatitude(double y) {
double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
double result;
/* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b);
......@@ -125,31 +138,31 @@ FLOAT FootpointLatitude(FLOAT y) {
/* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0)
* (1 + (POW(n, 2.0) / 4) + (POW(n, 4.0) / 64));
* (1 + (pow(n, 2.0) / 4) + (pow(n, 4.0) / 64));
/* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_;
/* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * POW(n, 3.0) / 32.0)
+ (269.0 * POW(n, 5.0) / 512.0);
beta_ = (3.0 * n / 2.0) + (-27.0 * pow(n, 3.0) / 32.0)
+ (269.0 * pow(n, 5.0) / 512.0);
/* Precalculate gamma_ (Eq. 10.22) */
gamma_ = (21.0 * POW(n, 2.0) / 16.0)
+ (-55.0 * POW(n, 4.0) / 32.0);
gamma_ = (21.0 * pow(n, 2.0) / 16.0)
+ (-55.0 * pow(n, 4.0) / 32.0);
/* Precalculate delta_ (Eq. 10.22) */
delta_ = (151.0 * POW(n, 3.0) / 96.0)
+ (-417.0 * POW(n, 5.0) / 128.0);
delta_ = (151.0 * pow(n, 3.0) / 96.0)
+ (-417.0 * pow(n, 5.0) / 128.0);
/* Precalculate epsilon_ (Eq. 10.22) */
epsilon_ = (1097.0 * POW(n, 4.0) / 512.0);
epsilon_ = (1097.0 * pow(n, 4.0) / 512.0);
/* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * SIN(2.0 * y_))
+ (gamma_ * SIN(4.0 * y_))
+ (delta_ * SIN(6.0 * y_))
+ (epsilon_ * SIN(8.0 * y_));
result = y_ + (beta_ * sin(2.0 * y_))
+ (gamma_ * sin(4.0 * y_))
+ (delta_ * sin(6.0 * y_))
+ (epsilon_ * sin(8.0 * y_));
return result;
}
......@@ -175,24 +188,24 @@ FLOAT FootpointLatitude(FLOAT y) {
//
// Returns:
// The function does not return a value.
void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y) {
FLOAT N, nu2, ep2, t, t2, l;
FLOAT l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
//FLOAT tmp; // Unused
void MapLatLonToXY (double phi, double lambda, double lambda0, double &x, double &y) {
double N, nu2, ep2, t, t2, l;
double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
//double tmp; // Unused
/* Precalculate ep2 */
ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0)) / POW(sm_b, 2.0);
ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0)) / pow(sm_b, 2.0);
/* Precalculate nu2 */
nu2 = ep2 * POW(COS(phi), 2.0);
nu2 = ep2 * pow(cos(phi), 2.0);
/* Precalculate N */
N = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nu2));
N = pow(sm_a, 2.0) / (sm_b * sqrt(1 + nu2));
/* Precalculate t */
t = TAN(phi);
t = tan(phi);
t2 = t * t;
//tmp = (t2 * t2 * t2) - POW(t, 6.0); // Unused
//tmp = (t2 * t2 * t2) - pow(t, 6.0); // Unused
/* Precalculate l */
l = lambda - lambda0;
......@@ -216,17 +229,17 @@ void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y)
l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
/* Calculate easting (x) */
x = N * COS(phi) * l
+ (N / 6.0 * POW(COS(phi), 3.0) * l3coef * POW(l, 3.0))
+ (N / 120.0 * POW(COS(phi), 5.0) * l5coef * POW(l, 5.0))
+ (N / 5040.0 * POW(COS(phi), 7.0) * l7coef * POW(l, 7.0));
x = N * cos(phi) * l
+ (N / 6.0 * pow(cos(phi), 3.0) * l3coef * pow(l, 3.0))
+ (N / 120.0 * pow(cos(phi), 5.0) * l5coef * pow(l, 5.0))
+ (N / 5040.0 * pow(cos(phi), 7.0) * l7coef * pow(l, 7.0));
/* Calculate northing (y) */
y = ArcLengthOfMeridian (phi)
+ (t / 2.0 * N * POW(COS(phi), 2.0) * POW(l, 2.0))
+ (t / 24.0 * N * POW(COS(phi), 4.0) * l4coef * POW(l, 4.0))
+ (t / 720.0 * N * POW(COS(phi), 6.0) * l6coef * POW(l, 6.0))
+ (t / 40320.0 * N * POW(COS(phi), 8.0) * l8coef * POW(l, 8.0));
+ (t / 2.0 * N * pow(cos(phi), 2.0) * pow(l, 2.0))
+ (t / 24.0 * N * pow(cos(phi), 4.0) * l4coef * pow(l, 4.0))
+ (t / 720.0 * N * pow(cos(phi), 6.0) * l6coef * pow(l, 6.0))
+ (t / 40320.0 * N * pow(cos(phi), 8.0) * l8coef * pow(l, 8.0));
return;
}
......@@ -260,31 +273,31 @@ void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y)
//
// x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
// to optimize computations.
void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda)
void MapXYToLatLon (double x, double y, double lambda0, double& phi, double& lambda)
{
FLOAT phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
FLOAT x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
FLOAT x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
/* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude (y);
/* Precalculate ep2 */
ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0))
/ POW(sm_b, 2.0);
ep2 = (pow(sm_a, 2.0) - pow(sm_b, 2.0))
/ pow(sm_b, 2.0);
/* Precalculate cos (phif) */
cf = COS(phif);
cf = cos(phif);
/* Precalculate nuf2 */
nuf2 = ep2 * POW(cf, 2.0);
nuf2 = ep2 * pow(cf, 2.0);
/* Precalculate Nf and initialize Nfpow */
Nf = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nuf2));
Nf = pow(sm_a, 2.0) / (sm_b * sqrt(1 + nuf2));
Nfpow = Nf;
/* Precalculate tf */
tf = TAN(phif);
tf = tan(phif);
tf2 = tf * tf;
tf4 = tf2 * tf2;
......@@ -333,15 +346,15 @@ void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda)
/* Calculate latitude */
phi = phif + x2frac * x2poly * (x * x)
+ x4frac * x4poly * POW(x, 4.0)
+ x6frac * x6poly * POW(x, 6.0)
+ x8frac * x8poly * POW(x, 8.0);
+ x4frac * x4poly * pow(x, 4.0)
+ x6frac * x6poly * pow(x, 6.0)
+ x8frac * x8poly * pow(x, 8.0);
/* Calculate longitude */
lambda = lambda0 + x1frac * x
+ x3frac * x3poly * POW(x, 3.0)
+ x5frac * x5poly * POW(x, 5.0)
+ x7frac * x7poly * POW(x, 7.0);
+ x3frac * x3poly * pow(x, 3.0)
+ x5frac * x5poly * pow(x, 5.0)
+ x7frac * x7poly * pow(x, 7.0);
return;
}
......@@ -366,9 +379,9 @@ void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda)
//
// Returns:
// The UTM zone used for calculating the values of x and y.
int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y) {
int LatLonToUTMXY (double lat, double lon, int zone, double& x, double& y) {
if ( (zone < 1) || (zone > 60) )
zone = FLOOR((lon + 180.0) / 6) + 1;
zone = floor((lon + 180.0) / 6) + 1;
MapLatLonToXY (DegToRad(lat), DegToRad(lon), UTMCentralMeridian(zone), x, y);
......@@ -401,8 +414,8 @@ int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y) {
//
// Returns:
// The function does not return a value.
void UTMXYToLatLon (FLOAT x, FLOAT y, int zone, bool southhemi, FLOAT& lat, FLOAT& lon) {
FLOAT cmeridian;
void UTMXYToLatLon (double x, double y, int zone, bool southhemi, double& lat, double& lon) {
double cmeridian;
x -= 500000.0;
x /= UTMScaleFactor;
......
......@@ -3,9 +3,6 @@
// Original Javascript by Chuck Taylor
// Port to C++ by Alex Hajnal
//
// *** THIS CODE USES 32-BIT FLOATS BY DEFAULT ***
// *** For 64-bit double-precision edit this file: undefine FLOAT_32 and define FLOAT_64 (see below)
//
// This is a simple port of the code on the Geographic/UTM Coordinate Converter (1) page from Javascript to C++.
// Using this you can easily convert between UTM and WGS84 (latitude and longitude).
// Accuracy seems to be around 50cm (I suspect rounding errors are limiting precision).
......@@ -15,58 +12,18 @@
//
// 1) http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
// QGC Note: This file has been slightly modified to prevent possible conflicts with other parts of the system
#ifndef UTM_H
#define UTM_H
// Choose floating point precision:
// 32-bit (for Teensy 3.5/3.6 ARM boards, etc.)
#define FLOAT_64
// 64-bit (for desktop/server use)
//#define FLOAT_64
#ifdef FLOAT_64
#define FLOAT double
#define SIN sin
#define COS cos
#define TAN tan
#define POW pow
#define SQRT sqrt
#define FLOOR floor
#else
#ifdef FLOAT_32
#define FLOAT float
#define SIN sinf
#define COS cosf
#define TAN tanf
#define POW powf
#define SQRT sqrtf
#define FLOOR floorf
#endif
#endif
#include <math.h>
#define pi 3.14159265358979
/* Ellipsoid model constants (actual values here are for WGS84) */
#define sm_a 6378137.0
#define sm_b 6356752.314
#define sm_EccSquared 6.69437999013e-03
#define UTMScaleFactor 0.9996
// DegToRad
// Converts degrees to radians.
FLOAT DegToRad(FLOAT deg);
double DegToRad(double deg);
// RadToDeg
// Converts radians to degrees.
FLOAT RadToDeg(FLOAT rad);
double RadToDeg(double rad);
// ArcLengthOfMeridian
// Computes the ellipsoidal distance from the equator to a point at a
......@@ -84,7 +41,7 @@ FLOAT RadToDeg(FLOAT rad);
//
// Returns:
// The ellipsoidal distance of the point from the equator, in meters.
FLOAT ArcLengthOfMeridian (FLOAT phi);
double ArcLengthOfMeridian (double phi);
// UTMCentralMeridian
// Determines the central meridian for the given UTM zone.
......@@ -95,7 +52,7 @@ FLOAT ArcLengthOfMeridian (FLOAT phi);
// Returns:
// The central meridian for the given UTM zone, in radians
// Range of the central meridian is the radian equivalent of [-177,+177].
FLOAT UTMCentralMeridian(int zone);
double UTMCentralMeridian(int zone);
// FootpointLatitude
//
......@@ -110,7 +67,7 @@ FLOAT UTMCentralMeridian(int zone);
//
// Returns:
// The footpoint latitude, in radians.
FLOAT FootpointLatitude(FLOAT y);
double FootpointLatitude(double y);
// MapLatLonToXY
// Converts a latitude/longitude pair to x and y coordinates in the
......@@ -131,7 +88,7 @@ FLOAT FootpointLatitude(FLOAT y);
//
// Returns:
// The function does not return a value.
void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y);
void MapLatLonToXY (double phi, double lambda, double lambda0, double &x, double &y);
// MapXYToLatLon
// Converts x and y coordinates in the Transverse Mercator projection to
......@@ -160,7 +117,7 @@ void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y);
//
// x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
// to optimize computations.
void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda);
void MapXYToLatLon (double x, double y, double lambda0, double& phi, double& lambda);
// LatLonToUTMXY
// Converts a latitude/longitude pair to x and y coordinates in the
......@@ -179,7 +136,7 @@ void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda);
//
// Returns:
// The UTM zone used for calculating the values of x and y.
int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y);
int LatLonToUTMXY (double lat, double lon, int zone, double& x, double& y);
// UTMXYToLatLon
//
......@@ -200,7 +157,7 @@ int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y);
//
// Returns:
// The function does not return a value.
void UTMXYToLatLon (FLOAT x, FLOAT y, int zone, bool southhemi, FLOAT& lat, FLOAT& lon);
void UTMXYToLatLon (double x, double y, int zone, bool southhemi, double& lat, double& lon);
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment