1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/****************************************************************************
*
* (c) 2009-2016 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
*
* QGroundControl is licensed according to the terms in the file
* COPYING.md in the root of the source code directory.
*
****************************************************************************/
#include "APMCompassCal.h"
#include "AutoPilotPlugin.h"
#include "ParameterManager.h"
QGC_LOGGING_CATEGORY(APMCompassCalLog, "APMCompassCalLog")
const float CalWorkerThread::mag_sphere_radius = 0.2f;
const unsigned int CalWorkerThread::calibration_sides = 6;
const unsigned int CalWorkerThread::calibration_total_points = 240;
const unsigned int CalWorkerThread::calibraton_duration_seconds = CalWorkerThread::calibration_sides * 10;
const char* CalWorkerThread::rgCompassParams[3][4] = {
{ "COMPASS_OFS_X", "COMPASS_OFS_Y", "COMPASS_OFS_Z", "COMPASS_DEV_ID" },
{ "COMPASS_OFS2_X", "COMPASS_OFS2_Y", "COMPASS_OFS2_Z", "COMPASS_DEV_ID2" },
{ "COMPASS_OFS3_X", "COMPASS_OFS3_Y", "COMPASS_OFS3_Z", "COMPASS_DEV_ID3" },
};
CalWorkerThread::CalWorkerThread(Vehicle* vehicle, QObject* parent)
: QThread(parent)
, _vehicle(vehicle)
, _cancel(false)
{
}
void CalWorkerThread::run(void)
{
if (calibrate() == calibrate_return_ok) {
_emitVehicleTextMessage(QStringLiteral("[cal] progress <100>"));
_emitVehicleTextMessage(QStringLiteral("[cal] calibration done: mag"));
}
}
void CalWorkerThread::_emitVehicleTextMessage(const QString& message)
{
emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message);
qCDebug(APMCompassCalLog) << message;
}
unsigned CalWorkerThread::progress_percentage(mag_worker_data_t* worker_data)
{
return 100 * ((float)worker_data->done_count) / calibration_sides;
}
CalWorkerThread::calibrate_return CalWorkerThread::calibrate(void)
{
calibrate_return result = calibrate_return_ok;
mag_worker_data_t worker_data;
worker_data.done_count = 0;
worker_data.calibration_points_perside = calibration_total_points / calibration_sides;
worker_data.calibration_interval_perside_seconds = calibraton_duration_seconds / calibration_sides;
worker_data.calibration_interval_perside_useconds = worker_data.calibration_interval_perside_seconds * 1000 * 1000;
// Collect data for all sides
worker_data.side_data_collected[DETECT_ORIENTATION_RIGHTSIDE_UP] = false;
worker_data.side_data_collected[DETECT_ORIENTATION_LEFT] = false;
worker_data.side_data_collected[DETECT_ORIENTATION_NOSE_DOWN] = false;
worker_data.side_data_collected[DETECT_ORIENTATION_TAIL_DOWN] = false;
worker_data.side_data_collected[DETECT_ORIENTATION_UPSIDE_DOWN] = false;
worker_data.side_data_collected[DETECT_ORIENTATION_RIGHT] = false;
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
// Initialize to no memory allocated
worker_data.x[cur_mag] = NULL;
worker_data.y[cur_mag] = NULL;
worker_data.z[cur_mag] = NULL;
worker_data.calibration_counter_total[cur_mag] = 0;
}
const unsigned int calibration_points_maxcount = calibration_sides * worker_data.calibration_points_perside;
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
if (rgCompassAvailable[cur_mag]) {
worker_data.x[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
worker_data.y[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
worker_data.z[cur_mag] = reinterpret_cast<float *>(malloc(sizeof(float) * calibration_points_maxcount));
if (worker_data.x[cur_mag] == NULL || worker_data.y[cur_mag] == NULL || worker_data.z[cur_mag] == NULL) {
_emitVehicleTextMessage(QStringLiteral("[cal] ERROR: out of memory"));
result = calibrate_return_error;
}
}
}
if (result == calibrate_return_ok) {
result = calibrate_from_orientation(
worker_data.side_data_collected, // Sides to calibrate
&worker_data); // Opaque data for calibration worked
}
// Calculate calibration values for each mag
float sphere_x[max_mags];
float sphere_y[max_mags];
float sphere_z[max_mags];
float sphere_radius[max_mags];
// Sphere fit the data to get calibration values
if (result == calibrate_return_ok) {
for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) {
if (rgCompassAvailable[cur_mag]) {
sphere_fit_least_squares(worker_data.x[cur_mag], worker_data.y[cur_mag], worker_data.z[cur_mag],
worker_data.calibration_counter_total[cur_mag],
100, 0.0f,
&sphere_x[cur_mag], &sphere_y[cur_mag], &sphere_z[cur_mag],
&sphere_radius[cur_mag]);
if (qIsNaN(sphere_x[cur_mag]) || qIsNaN(sphere_y[cur_mag]) || qIsNaN(sphere_z[cur_mag])) {
_emitVehicleTextMessage(QStringLiteral("[cal] ERROR: NaN in sphere fit for mag %1").arg(cur_mag));
result = calibrate_return_error;
}
}
}
}
// Data points are no longer needed
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
free(worker_data.x[cur_mag]);
free(worker_data.y[cur_mag]);
free(worker_data.z[cur_mag]);
}
if (result == calibrate_return_ok) {
for (unsigned cur_mag=0; cur_mag<max_mags; cur_mag++) {
if (rgCompassAvailable[cur_mag]) {
_emitVehicleTextMessage(QStringLiteral("[cal] mag #%1 off: x:%2 y:%3 z:%4").arg(cur_mag).arg(-sphere_x[cur_mag]).arg(-sphere_y[cur_mag]).arg(-sphere_z[cur_mag]));
float sensorId = 0.0f;
if (cur_mag == 0) {
sensorId = 2.0f;
} else if (cur_mag == 1) {
sensorId = 5.0f;
} else if (cur_mag == 2) {
sensorId = 6.0f;
}
if (sensorId != 0.0f) {
_vehicle->sendMavCommand(_vehicle->defaultComponentId(),
MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS,
true, /* showErrors */
sensorId, -sphere_x[cur_mag], -sphere_y[cur_mag], -sphere_z[cur_mag]);
}
}
}
}
return result;
}
CalWorkerThread::calibrate_return CalWorkerThread::mag_calibration_worker(detect_orientation_return orientation, void* data)
{
calibrate_return result = calibrate_return_ok;
unsigned int calibration_counter_side;
mag_worker_data_t* worker_data = (mag_worker_data_t*)(data);
_emitVehicleTextMessage(QStringLiteral("[cal] Rotate vehicle around the detected orientation"));
_emitVehicleTextMessage(QStringLiteral("[cal] Continue rotation for %1 seconds").arg(worker_data->calibration_interval_perside_seconds));
uint64_t calibration_deadline = QGC::groundTimeUsecs() + worker_data->calibration_interval_perside_useconds;
unsigned int loop_interval_usecs = (worker_data->calibration_interval_perside_seconds * 1000000) / worker_data->calibration_points_perside;
calibration_counter_side = 0;
while (QGC::groundTimeUsecs() < calibration_deadline && calibration_counter_side < worker_data->calibration_points_perside) {
if (_cancel) {
result = calibrate_return_cancelled;
break;
}
int prev_count[max_mags];
bool rejected = false;
for (size_t cur_mag=0; cur_mag<max_mags; cur_mag++) {
prev_count[cur_mag] = worker_data->calibration_counter_total[cur_mag];
if (!rgCompassAvailable[cur_mag]) {
continue;
}
lastScaledImuMutex.lock();
mavlink_scaled_imu_t copyLastScaledImu = rgLastScaledImu[cur_mag];
lastScaledImuMutex.unlock();
worker_data->x[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.xmag;
worker_data->y[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.ymag;
worker_data->z[cur_mag][worker_data->calibration_counter_total[cur_mag]] = copyLastScaledImu.zmag;
worker_data->calibration_counter_total[cur_mag]++;
}
// Keep calibration of all mags in lockstep
if (rejected) {
qCDebug(APMCompassCalLog) << QStringLiteral("Point rejected");
// Reset counts, since one of the mags rejected the measurement
for (size_t cur_mag = 0; cur_mag < max_mags; cur_mag++) {
worker_data->calibration_counter_total[cur_mag] = prev_count[cur_mag];
}
} else {
calibration_counter_side++;
// Progress indicator for side
_emitVehicleTextMessage(QStringLiteral("[cal] %1 side calibration: progress <%2>").arg(detect_orientation_str(orientation)).arg(progress_percentage(worker_data) +
(unsigned)((100 / calibration_sides) * ((float)calibration_counter_side / (float)worker_data->calibration_points_perside))));
}
usleep(loop_interval_usecs);
}
if (result == calibrate_return_ok) {
_emitVehicleTextMessage(QStringLiteral("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orientation)));
worker_data->done_count++;
_emitVehicleTextMessage(QStringLiteral("[cal] progress <%1>").arg(progress_percentage(worker_data)));
}
return result;
}
CalWorkerThread::calibrate_return CalWorkerThread::calibrate_from_orientation(
bool side_data_collected[detect_orientation_side_count],
void* worker_data)
{
calibrate_return result = calibrate_return_ok;
unsigned orientation_failures = 0;
// Rotate through all requested orientations
while (true) {
if (_cancel) {
result = calibrate_return_cancelled;
break;
}
unsigned int side_complete_count = 0;
// Update the number of completed sides
for (unsigned i = 0; i < detect_orientation_side_count; i++) {
if (side_data_collected[i]) {
side_complete_count++;
}
}
if (side_complete_count == detect_orientation_side_count) {
// We have completed all sides, move on
break;
}
/* inform user which orientations are still needed */
char pendingStr[256];
pendingStr[0] = 0;
for (unsigned int cur_orientation=0; cur_orientation<detect_orientation_side_count; cur_orientation++) {
if (!side_data_collected[cur_orientation]) {
strcat(pendingStr, " ");
strcat(pendingStr, detect_orientation_str((enum detect_orientation_return)cur_orientation));
}
}
_emitVehicleTextMessage(QStringLiteral("[cal] pending:%1").arg(pendingStr));
_emitVehicleTextMessage(QStringLiteral("[cal] hold vehicle still on a pending side"));
enum detect_orientation_return orient = detect_orientation();
if (orient == DETECT_ORIENTATION_ERROR) {
orientation_failures++;
_emitVehicleTextMessage(QStringLiteral("[cal] detected motion, hold still..."));
continue;
}
/* inform user about already handled side */
if (side_data_collected[orient]) {
orientation_failures++;
_emitVehicleTextMessage(QStringLiteral("%1 side already completed").arg(detect_orientation_str(orient)));
_emitVehicleTextMessage(QStringLiteral("rotate to a pending side"));
continue;
}
_emitVehicleTextMessage(QStringLiteral("[cal] %1 orientation detected").arg(detect_orientation_str(orient)));
orientation_failures = 0;
// Call worker routine
result = mag_calibration_worker(orient, worker_data);
if (result != calibrate_return_ok ) {
break;
}
_emitVehicleTextMessage(QStringLiteral("[cal] %1 side done, rotate to a different side").arg(detect_orientation_str(orient)));
// Note that this side is complete
side_data_collected[orient] = true;
usleep(200000);
}
return result;
}
enum CalWorkerThread::detect_orientation_return CalWorkerThread::detect_orientation(void)
{
bool stillDetected = false;
quint64 stillDetectTime;
int16_t lastX = 0;
int16_t lastY = 0;
int16_t lastZ = 0;
while (true) {
lastScaledImuMutex.lock();
mavlink_raw_imu_t copyLastRawImu = lastRawImu;
lastScaledImuMutex.unlock();
int16_t xDelta = abs(lastX - copyLastRawImu.xacc);
int16_t yDelta = abs(lastY - copyLastRawImu.yacc);
int16_t zDelta = abs(lastZ - copyLastRawImu.zacc);
lastX = copyLastRawImu.xacc;
lastY = copyLastRawImu.yacc;
lastZ = copyLastRawImu.zacc;
if (xDelta < 100 && yDelta < 100 && zDelta < 100) {
if (stillDetected) {
if (QGC::groundTimeMilliseconds() - stillDetectTime > 1000) {
break;
}
} else {
stillDetectTime = QGC::groundTimeMilliseconds();
stillDetected = true;
}
} else {
stillDetected = false;
}
if (_cancel) {
break;
}
// FIXME: No timeout for never detect still
usleep(1000);
}
static const uint16_t rawImuOneG = 800;
static const uint16_t rawImuNoGThreshold = 200;
if (lastX > rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_TAIL_DOWN; // [ g, 0, 0 ]
}
if (lastX < -rawImuOneG && abs(lastY) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_NOSE_DOWN; // [ -g, 0, 0 ]
}
if (lastY > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_LEFT; // [ 0, g, 0 ]
}
if (lastY < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastZ) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_RIGHT; // [ 0, -g, 0 ]
}
if (lastZ > rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_UPSIDE_DOWN; // [ 0, 0, g ]
}
if (lastZ < -rawImuOneG && abs(lastX) < rawImuNoGThreshold && abs(lastY) < rawImuNoGThreshold) {
return DETECT_ORIENTATION_RIGHTSIDE_UP; // [ 0, 0, -g ]
}
_emitVehicleTextMessage(QStringLiteral("[cal] ERROR: invalid orientation"));
return DETECT_ORIENTATION_ERROR; // Can't detect orientation
}
const char* CalWorkerThread::detect_orientation_str(enum detect_orientation_return orientation)
{
static const char* rgOrientationStrs[] = {
"back", // tail down
"front", // nose down
"left",
"right",
"up", // upside-down
"down", // right-side up
"error"
};
return rgOrientationStrs[orientation];
}
int CalWorkerThread::sphere_fit_least_squares(const float x[], const float y[], const float z[],
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z,
float *sphere_radius)
{
float x_sumplain = 0.0f;
float x_sumsq = 0.0f;
float x_sumcube = 0.0f;
float y_sumplain = 0.0f;
float y_sumsq = 0.0f;
float y_sumcube = 0.0f;
float z_sumplain = 0.0f;
float z_sumsq = 0.0f;
float z_sumcube = 0.0f;
float xy_sum = 0.0f;
float xz_sum = 0.0f;
float yz_sum = 0.0f;
float x2y_sum = 0.0f;
float x2z_sum = 0.0f;
float y2x_sum = 0.0f;
float y2z_sum = 0.0f;
float z2x_sum = 0.0f;
float z2y_sum = 0.0f;
for (unsigned int i = 0; i < size; i++) {
float x2 = x[i] * x[i];
float y2 = y[i] * y[i];
float z2 = z[i] * z[i];
x_sumplain += x[i];
x_sumsq += x2;
x_sumcube += x2 * x[i];
y_sumplain += y[i];
y_sumsq += y2;
y_sumcube += y2 * y[i];
z_sumplain += z[i];
z_sumsq += z2;
z_sumcube += z2 * z[i];
xy_sum += x[i] * y[i];
xz_sum += x[i] * z[i];
yz_sum += y[i] * z[i];
x2y_sum += x2 * y[i];
x2z_sum += x2 * z[i];
y2x_sum += y2 * x[i];
y2z_sum += y2 * z[i];
z2x_sum += z2 * x[i];
z2y_sum += z2 * y[i];
}
//
//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
//
// P is a structure that has been computed with the data earlier.
// P.npoints is the number of elements; the length of X,Y,Z are identical.
// P's members are logically named.
//
// X[n] is the x component of point n
// Y[n] is the y component of point n
// Z[n] is the z component of point n
//
// A is the x coordiante of the sphere
// B is the y coordiante of the sphere
// C is the z coordiante of the sphere
// Rsq is the radius squared of the sphere.
//
//This method should converge; maybe 5-100 iterations or more.
//
float x_sum = x_sumplain / size; //sum( X[n] )
float x_sum2 = x_sumsq / size; //sum( X[n]^2 )
float x_sum3 = x_sumcube / size; //sum( X[n]^3 )
float y_sum = y_sumplain / size; //sum( Y[n] )
float y_sum2 = y_sumsq / size; //sum( Y[n]^2 )
float y_sum3 = y_sumcube / size; //sum( Y[n]^3 )
float z_sum = z_sumplain / size; //sum( Z[n] )
float z_sum2 = z_sumsq / size; //sum( Z[n]^2 )
float z_sum3 = z_sumcube / size; //sum( Z[n]^3 )
float XY = xy_sum / size; //sum( X[n] * Y[n] )
float XZ = xz_sum / size; //sum( X[n] * Z[n] )
float YZ = yz_sum / size; //sum( Y[n] * Z[n] )
float X2Y = x2y_sum / size; //sum( X[n]^2 * Y[n] )
float X2Z = x2z_sum / size; //sum( X[n]^2 * Z[n] )
float Y2X = y2x_sum / size; //sum( Y[n]^2 * X[n] )
float Y2Z = y2z_sum / size; //sum( Y[n]^2 * Z[n] )
float Z2X = z2x_sum / size; //sum( Z[n]^2 * X[n] )
float Z2Y = z2y_sum / size; //sum( Z[n]^2 * Y[n] )
//Reduction of multiplications
float F0 = x_sum2 + y_sum2 + z_sum2;
float F1 = 0.5f * F0;
float F2 = -8.0f * (x_sum3 + Y2X + Z2X);
float F3 = -8.0f * (X2Y + y_sum3 + Z2Y);
float F4 = -8.0f * (X2Z + Y2Z + z_sum3);
//Set initial conditions:
float A = x_sum;
float B = y_sum;
float C = z_sum;
//First iteration computation:
float A2 = A * A;
float B2 = B * B;
float C2 = C * C;
float QS = A2 + B2 + C2;
float QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);
//Set initial conditions:
float Rsq = F0 + QB + QS;
//First iteration computation:
float Q0 = 0.5f * (QS - Rsq);
float Q1 = F1 + Q0;
float Q2 = 8.0f * (QS - Rsq + QB + F0);
float aA, aB, aC, nA, nB, nC, dA, dB, dC;
//Iterate N times, ignore stop condition.
unsigned int n = 0;
#define FLT_EPSILON 1.1920929e-07F /* 1E-5 */
while (n < max_iterations) {
n++;
//Compute denominator:
aA = Q2 + 16.0f * (A2 - 2.0f * A * x_sum + x_sum2);
aB = Q2 + 16.0f * (B2 - 2.0f * B * y_sum + y_sum2);
aC = Q2 + 16.0f * (C2 - 2.0f * C * z_sum + z_sum2);
aA = (fabsf(aA) < FLT_EPSILON) ? 1.0f : aA;
aB = (fabsf(aB) < FLT_EPSILON) ? 1.0f : aB;
aC = (fabsf(aC) < FLT_EPSILON) ? 1.0f : aC;
//Compute next iteration
nA = A - ((F2 + 16.0f * (B * XY + C * XZ + x_sum * (-A2 - Q0) + A * (x_sum2 + Q1 - C * z_sum - B * y_sum))) / aA);
nB = B - ((F3 + 16.0f * (A * XY + C * YZ + y_sum * (-B2 - Q0) + B * (y_sum2 + Q1 - A * x_sum - C * z_sum))) / aB);
nC = C - ((F4 + 16.0f * (A * XZ + B * YZ + z_sum * (-C2 - Q0) + C * (z_sum2 + Q1 - A * x_sum - B * y_sum))) / aC);
//Check for stop condition
dA = (nA - A);
dB = (nB - B);
dC = (nC - C);
if ((dA * dA + dB * dB + dC * dC) <= delta) { break; }
//Compute next iteration's values
A = nA;
B = nB;
C = nC;
A2 = A * A;
B2 = B * B;
C2 = C * C;
QS = A2 + B2 + C2;
QB = -2.0f * (A * x_sum + B * y_sum + C * z_sum);
Rsq = F0 + QB + QS;
Q0 = 0.5f * (QS - Rsq);
Q1 = F1 + Q0;
Q2 = 8.0f * (QS - Rsq + QB + F0);
}
*sphere_x = A;
*sphere_y = B;
*sphere_z = C;
*sphere_radius = sqrtf(Rsq);
return 0;
}
APMCompassCal::APMCompassCal(void)
: _vehicle(NULL)
, _calWorkerThread(NULL)
{
}
APMCompassCal::~APMCompassCal()
{
if (_calWorkerThread) {
_calWorkerThread->terminate();
// deleteLater so it happens on correct thread
_calWorkerThread->deleteLater();
}
}
void APMCompassCal::setVehicle(Vehicle* vehicle)
{
if (!vehicle) {
qWarning() << "vehicle == NULL";
}
_vehicle = vehicle;
}
void APMCompassCal::startCalibration(void)
{
_setSensorTransmissionSpeed(true /* fast */);
connect (_vehicle, &Vehicle::mavlinkRawImu, this, &APMCompassCal::_handleMavlinkRawImu);
connect (_vehicle, &Vehicle::mavlinkScaledImu2, this, &APMCompassCal::_handleMavlinkScaledImu2);
connect (_vehicle, &Vehicle::mavlinkScaledImu3, this, &APMCompassCal::_handleMavlinkScaledImu3);
// Simulate a start message
_emitVehicleTextMessage(QStringLiteral("[cal] calibration started: mag"));
_calWorkerThread = new CalWorkerThread(_vehicle);
connect(_calWorkerThread, &CalWorkerThread::vehicleTextMessage, this, &APMCompassCal::vehicleTextMessage);
// Clear the offset parameters so we get raw data
for (int i=0; i<3; i++) {
_calWorkerThread->rgCompassAvailable[i] = true;
const char* deviceIdParam = CalWorkerThread::rgCompassParams[i][3];
if (_vehicle->parameterManager()->parameterExists(-1, deviceIdParam)) {
_calWorkerThread->rgCompassAvailable[i] = _vehicle->parameterManager()->getParameter(-1, deviceIdParam)->rawValue().toInt() > 0;
for (int j=0; j<3; j++) {
const char* offsetParam = CalWorkerThread::rgCompassParams[i][j];
Fact* paramFact = _vehicle->parameterManager()->getParameter(-1, offsetParam);
_rgSavedCompassOffsets[i][j] = paramFact->rawValue().toFloat();
paramFact->setRawValue(0.0);
}
} else {
_calWorkerThread->rgCompassAvailable[i] = false;
}
qCDebug(APMCompassCalLog) << QStringLiteral("Compass %1 available: %2").arg(i).arg(_calWorkerThread->rgCompassAvailable[i]);
}
_calWorkerThread->start();
}
void APMCompassCal::cancelCalibration(void)
{
_stopCalibration();
// Put the original offsets back
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
const char* offsetParam = CalWorkerThread::rgCompassParams[i][j];
if (_vehicle->parameterManager()->parameterExists(-1, offsetParam)) {
_vehicle->parameterManager()->getParameter(-1, offsetParam)-> setRawValue(_rgSavedCompassOffsets[i][j]);
}
}
}
// Simulate a cancelled message
_emitVehicleTextMessage(QStringLiteral("[cal] calibration cancelled"));
}
void APMCompassCal::_handleMavlinkRawImu(mavlink_message_t message)
{
_calWorkerThread->lastScaledImuMutex.lock();
mavlink_msg_raw_imu_decode(&message, &_calWorkerThread->lastRawImu);
_calWorkerThread->rgLastScaledImu[0].xacc = _calWorkerThread->lastRawImu.xacc;
_calWorkerThread->rgLastScaledImu[0].yacc = _calWorkerThread->lastRawImu.yacc;
_calWorkerThread->rgLastScaledImu[0].zacc = _calWorkerThread->lastRawImu.zacc;
_calWorkerThread->rgLastScaledImu[0].xgyro = _calWorkerThread->lastRawImu.xgyro;
_calWorkerThread->rgLastScaledImu[0].ygyro = _calWorkerThread->lastRawImu.ygyro;
_calWorkerThread->rgLastScaledImu[0].zgyro = _calWorkerThread->lastRawImu.zgyro;
_calWorkerThread->rgLastScaledImu[0].xmag = _calWorkerThread->lastRawImu.xmag;
_calWorkerThread->rgLastScaledImu[0].ymag = _calWorkerThread->lastRawImu.ymag;
_calWorkerThread->rgLastScaledImu[0].zmag = _calWorkerThread->lastRawImu.zmag;
_calWorkerThread->lastScaledImuMutex.unlock();
}
void APMCompassCal::_handleMavlinkScaledImu2(mavlink_message_t message)
{
_calWorkerThread->lastScaledImuMutex.lock();
mavlink_msg_scaled_imu2_decode(&message, (mavlink_scaled_imu2_t*)&_calWorkerThread->rgLastScaledImu[1]);
_calWorkerThread->lastScaledImuMutex.unlock();
}
void APMCompassCal::_handleMavlinkScaledImu3(mavlink_message_t message)
{
_calWorkerThread->lastScaledImuMutex.lock();
mavlink_msg_scaled_imu3_decode(&message, (mavlink_scaled_imu3_t*)&_calWorkerThread->rgLastScaledImu[2]);
_calWorkerThread->lastScaledImuMutex.unlock();
}
void APMCompassCal::_setSensorTransmissionSpeed(bool fast)
{
_vehicle->requestDataStream(MAV_DATA_STREAM_RAW_SENSORS, fast ? 10 : 2);
}
void APMCompassCal::_stopCalibration(void)
{
_calWorkerThread->cancel();
disconnect (_vehicle, &Vehicle::mavlinkRawImu, this, &APMCompassCal::_handleMavlinkRawImu);
disconnect (_vehicle, &Vehicle::mavlinkScaledImu2, this, &APMCompassCal::_handleMavlinkScaledImu2);
disconnect (_vehicle, &Vehicle::mavlinkScaledImu3, this, &APMCompassCal::_handleMavlinkScaledImu3);
_setSensorTransmissionSpeed(false /* fast */);
}
void APMCompassCal::_emitVehicleTextMessage(const QString& message)
{
qCDebug(APMCompassCalLog()) << message;
emit vehicleTextMessage(_vehicle->id(), 0, MAV_SEVERITY_INFO, message);
}