MatrixBase.h 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H

namespace Eigen {

/** \class MatrixBase
  * \ingroup Core_Module
  *
  * \brief Base class for all dense matrices, vectors, and expressions
  *
  * This class is the base that is inherited by all matrix, vector, and related expression
  * types. Most of the Eigen API is contained in this class, and its base classes. Other important
  * classes for the Eigen API are Matrix, and VectorwiseOp.
  *
  * Note that some methods are defined in other modules such as the \ref LU_Module LU module
  * for all functions related to matrix inversions.
  *
  * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
  *
  * When writing a function taking Eigen objects as argument, if you want your function
  * to take as argument any matrix, vector, or expression, just let it take a
  * MatrixBase argument. As an example, here is a function printFirstRow which, given
  * a matrix, vector, or expression \a x, prints the first row of \a x.
  *
  * \code
    template<typename Derived>
    void printFirstRow(const Eigen::MatrixBase<Derived>& x)
    {
      cout << x.row(0) << endl;
    }
  * \endcode
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived> class MatrixBase
  : public DenseBase<Derived>
{
  public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef MatrixBase StorageBaseType;
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Index Index;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    typedef DenseBase<Derived> Base;
    using Base::RowsAtCompileTime;
    using Base::ColsAtCompileTime;
    using Base::SizeAtCompileTime;
    using Base::MaxRowsAtCompileTime;
    using Base::MaxColsAtCompileTime;
    using Base::MaxSizeAtCompileTime;
    using Base::IsVectorAtCompileTime;
    using Base::Flags;
    using Base::CoeffReadCost;

    using Base::derived;
    using Base::const_cast_derived;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::coeff;
    using Base::coeffRef;
    using Base::lazyAssign;
    using Base::eval;
    using Base::operator+=;
    using Base::operator-=;
    using Base::operator*=;
    using Base::operator/=;

    typedef typename Base::CoeffReturnType CoeffReturnType;
    typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
    typedef typename Base::RowXpr RowXpr;
    typedef typename Base::ColXpr ColXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN



#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** type of the equivalent square matrix */
    typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
                          EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN

    /** \returns the size of the main diagonal, which is min(rows(),cols()).
      * \sa rows(), cols(), SizeAtCompileTime. */
    inline Index diagonalSize() const { return (std::min)(rows(),cols()); }

    /** \brief The plain matrix type corresponding to this expression.
      *
      * This is not necessarily exactly the return type of eval(). In the case of plain matrices,
      * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
      * that the return type of eval() is either PlainObject or const PlainObject&.
      */
    typedef Matrix<typename internal::traits<Derived>::Scalar,
                internal::traits<Derived>::RowsAtCompileTime,
                internal::traits<Derived>::ColsAtCompileTime,
                AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
                internal::traits<Derived>::MaxRowsAtCompileTime,
                internal::traits<Derived>::MaxColsAtCompileTime
          > PlainObject;

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal Represents a matrix with all coefficients equal to one another*/
    typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
    /** \internal the return type of MatrixBase::adjoint() */
    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
                        CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
                        ConstTransposeReturnType
                     >::type AdjointReturnType;
    /** \internal Return type of eigenvalues() */
    typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
    /** \internal the return type of identity */
    typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
    /** \internal the return type of unit vectors */
    typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
                  internal::traits<Derived>::RowsAtCompileTime,
                  internal::traits<Derived>::ColsAtCompileTime> BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN

#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
#   include "../plugins/CommonCwiseUnaryOps.h"
#   include "../plugins/CommonCwiseBinaryOps.h"
#   include "../plugins/MatrixCwiseUnaryOps.h"
#   include "../plugins/MatrixCwiseBinaryOps.h"
#   ifdef EIGEN_MATRIXBASE_PLUGIN
#     include EIGEN_MATRIXBASE_PLUGIN
#   endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS

    /** Special case of the template operator=, in order to prevent the compiler
      * from generating a default operator= (issue hit with g++ 4.1)
      */
    Derived& operator=(const MatrixBase& other);

    // We cannot inherit here via Base::operator= since it is causing
    // trouble with MSVC.

    template <typename OtherDerived>
    Derived& operator=(const DenseBase<OtherDerived>& other);

    template <typename OtherDerived>
    Derived& operator=(const EigenBase<OtherDerived>& other);

    template<typename OtherDerived>
    Derived& operator=(const ReturnByValue<OtherDerived>& other);

    template<typename ProductDerived, typename Lhs, typename Rhs>
    Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);

    template<typename MatrixPower, typename Lhs, typename Rhs>
    Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);

    template<typename OtherDerived>
    Derived& operator+=(const MatrixBase<OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator-=(const MatrixBase<OtherDerived>& other);

    template<typename OtherDerived>
    const typename ProductReturnType<Derived,OtherDerived>::Type
    operator*(const MatrixBase<OtherDerived> &other) const;

    template<typename OtherDerived>
    const typename LazyProductReturnType<Derived,OtherDerived>::Type
    lazyProduct(const MatrixBase<OtherDerived> &other) const;

    template<typename OtherDerived>
    Derived& operator*=(const EigenBase<OtherDerived>& other);

    template<typename OtherDerived>
    void applyOnTheLeft(const EigenBase<OtherDerived>& other);

    template<typename OtherDerived>
    void applyOnTheRight(const EigenBase<OtherDerived>& other);

    template<typename DiagonalDerived>
    const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
    operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;

    template<typename OtherDerived>
    typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
    dot(const MatrixBase<OtherDerived>& other) const;

    #ifdef EIGEN2_SUPPORT
      template<typename OtherDerived>
      Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
    #endif

    RealScalar squaredNorm() const;
    RealScalar norm() const;
    RealScalar stableNorm() const;
    RealScalar blueNorm() const;
    RealScalar hypotNorm() const;
    const PlainObject normalized() const;
    void normalize();

    const AdjointReturnType adjoint() const;
    void adjointInPlace();

    typedef Diagonal<Derived> DiagonalReturnType;
    DiagonalReturnType diagonal();
    typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
    ConstDiagonalReturnType diagonal() const;

    template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
    template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };

    template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
    template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
    
    typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
    typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;

    DiagonalDynamicIndexReturnType diagonal(Index index);
    ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;

    #ifdef EIGEN2_SUPPORT
    template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
    template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
    
    // huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
    // of an integer constant. Solution: overload the part() method template wrt template parameters list.
    template<template<typename T, int N> class U>
    const DiagonalWrapper<ConstDiagonalReturnType> part() const
    { return diagonal().asDiagonal(); }
    #endif // EIGEN2_SUPPORT

    template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
    template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };

    template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
    template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;

    template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
    template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };

    template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
    template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;

    const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
                                         const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
    static const IdentityReturnType Identity();
    static const IdentityReturnType Identity(Index rows, Index cols);
    static const BasisReturnType Unit(Index size, Index i);
    static const BasisReturnType Unit(Index i);
    static const BasisReturnType UnitX();
    static const BasisReturnType UnitY();
    static const BasisReturnType UnitZ();
    static const BasisReturnType UnitW();

    const DiagonalWrapper<const Derived> asDiagonal() const;
    const PermutationWrapper<const Derived> asPermutation() const;

    Derived& setIdentity();
    Derived& setIdentity(Index rows, Index cols);

    bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;

    bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;

    template<typename OtherDerived>
    bool isOrthogonal(const MatrixBase<OtherDerived>& other,
                      const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;

    /** \returns true if each coefficients of \c *this and \a other are all exactly equal.
      * \warning When using floating point scalar values you probably should rather use a
      *          fuzzy comparison such as isApprox()
      * \sa isApprox(), operator!= */
    template<typename OtherDerived>
    inline bool operator==(const MatrixBase<OtherDerived>& other) const
    { return cwiseEqual(other).all(); }

    /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
      * \warning When using floating point scalar values you probably should rather use a
      *          fuzzy comparison such as isApprox()
      * \sa isApprox(), operator== */
    template<typename OtherDerived>
    inline bool operator!=(const MatrixBase<OtherDerived>& other) const
    { return cwiseNotEqual(other).any(); }

    NoAlias<Derived,Eigen::MatrixBase > noalias();

    inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
    inline ForceAlignedAccess<Derived> forceAlignedAccess();
    template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
    template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();

    Scalar trace() const;

/////////// Array module ///////////

    template<int p> RealScalar lpNorm() const;

    MatrixBase<Derived>& matrix() { return *this; }
    const MatrixBase<Derived>& matrix() const { return *this; }

    /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
      * \sa ArrayBase::matrix() */
    ArrayWrapper<Derived> array() { return derived(); }
    const ArrayWrapper<const Derived> array() const { return derived(); }

/////////// LU module ///////////

    const FullPivLU<PlainObject> fullPivLu() const;
    const PartialPivLU<PlainObject> partialPivLu() const;

    #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
    const LU<PlainObject> lu() const;
    #endif

    #ifdef EIGEN2_SUPPORT
    const LU<PlainObject> eigen2_lu() const;
    #endif

    #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
    const PartialPivLU<PlainObject> lu() const;
    #endif
    
    #ifdef EIGEN2_SUPPORT
    template<typename ResultType>
    void computeInverse(MatrixBase<ResultType> *result) const {
      *result = this->inverse();
    }
    #endif

    const internal::inverse_impl<Derived> inverse() const;
    template<typename ResultType>
    void computeInverseAndDetWithCheck(
      ResultType& inverse,
      typename ResultType::Scalar& determinant,
      bool& invertible,
      const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
    ) const;
    template<typename ResultType>
    void computeInverseWithCheck(
      ResultType& inverse,
      bool& invertible,
      const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
    ) const;
    Scalar determinant() const;

/////////// Cholesky module ///////////

    const LLT<PlainObject>  llt() const;
    const LDLT<PlainObject> ldlt() const;

/////////// QR module ///////////

    const HouseholderQR<PlainObject> householderQr() const;
    const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
    const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
    
    #ifdef EIGEN2_SUPPORT
    const QR<PlainObject> qr() const;
    #endif

    EigenvaluesReturnType eigenvalues() const;
    RealScalar operatorNorm() const;

/////////// SVD module ///////////

    JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;

    #ifdef EIGEN2_SUPPORT
    SVD<PlainObject> svd() const;
    #endif

/////////// Geometry module ///////////

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /// \internal helper struct to form the return type of the cross product
    template<typename OtherDerived> struct cross_product_return_type {
      typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
      typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
    };
    #endif // EIGEN_PARSED_BY_DOXYGEN
    template<typename OtherDerived>
    typename cross_product_return_type<OtherDerived>::type
    cross(const MatrixBase<OtherDerived>& other) const;
    template<typename OtherDerived>
    PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
    PlainObject unitOrthogonal(void) const;
    Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
    
    #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
    ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
    // put this as separate enum value to work around possible GCC 4.3 bug (?)
    enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
    typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
    HomogeneousReturnType homogeneous() const;
    #endif
    
    enum {
      SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
    };
    typedef Block<const Derived,
                  internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
                  internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
    typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
                const ConstStartMinusOne > HNormalizedReturnType;

    const HNormalizedReturnType hnormalized() const;

////////// Householder module ///////////

    void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
    template<typename EssentialPart>
    void makeHouseholder(EssentialPart& essential,
                         Scalar& tau, RealScalar& beta) const;
    template<typename EssentialPart>
    void applyHouseholderOnTheLeft(const EssentialPart& essential,
                                   const Scalar& tau,
                                   Scalar* workspace);
    template<typename EssentialPart>
    void applyHouseholderOnTheRight(const EssentialPart& essential,
                                    const Scalar& tau,
                                    Scalar* workspace);

///////// Jacobi module /////////

    template<typename OtherScalar>
    void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
    template<typename OtherScalar>
    void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);

///////// SparseCore module /////////

    template<typename OtherDerived>
    EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
    cwiseProduct(const SparseMatrixBase<OtherDerived> &other) const
    {
      return other.cwiseProduct(derived());
    }

///////// MatrixFunctions module /////////

    typedef typename internal::stem_function<Scalar>::type StemFunction;
    const MatrixExponentialReturnValue<Derived> exp() const;
    const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
    const MatrixFunctionReturnValue<Derived> cosh() const;
    const MatrixFunctionReturnValue<Derived> sinh() const;
    const MatrixFunctionReturnValue<Derived> cos() const;
    const MatrixFunctionReturnValue<Derived> sin() const;
    const MatrixSquareRootReturnValue<Derived> sqrt() const;
    const MatrixLogarithmReturnValue<Derived> log() const;
    const MatrixPowerReturnValue<Derived> pow(const RealScalar& p) const;

#ifdef EIGEN2_SUPPORT
    template<typename ProductDerived, typename Lhs, typename Rhs>
    Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
                                      EvalBeforeAssigningBit>& other);

    template<typename ProductDerived, typename Lhs, typename Rhs>
    Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
                                      EvalBeforeAssigningBit>& other);

    /** \deprecated because .lazy() is deprecated
      * Overloaded for cache friendly product evaluation */
    template<typename OtherDerived>
    Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
    { return lazyAssign(other._expression()); }

    template<unsigned int Added>
    const Flagged<Derived, Added, 0> marked() const;
    const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;

    inline const Cwise<Derived> cwise() const;
    inline Cwise<Derived> cwise();

    VectorBlock<Derived> start(Index size);
    const VectorBlock<const Derived> start(Index size) const;
    VectorBlock<Derived> end(Index size);
    const VectorBlock<const Derived> end(Index size) const;
    template<int Size> VectorBlock<Derived,Size> start();
    template<int Size> const VectorBlock<const Derived,Size> start() const;
    template<int Size> VectorBlock<Derived,Size> end();
    template<int Size> const VectorBlock<const Derived,Size> end() const;

    Minor<Derived> minor(Index row, Index col);
    const Minor<Derived> minor(Index row, Index col) const;
#endif

  protected:
    MatrixBase() : Base() {}

  private:
    explicit MatrixBase(int);
    MatrixBase(int,int);
    template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
  protected:
    // mixing arrays and matrices is not legal
    template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
    {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
    // mixing arrays and matrices is not legal
    template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& )
    {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};


/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/

/** replaces \c *this by \c *this * \a other.
  *
  * \returns a reference to \c *this
  *
  * Example: \include MatrixBase_applyOnTheRight.cpp
  * Output: \verbinclude MatrixBase_applyOnTheRight.out
  */
template<typename Derived>
template<typename OtherDerived>
inline Derived&
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
{
  other.derived().applyThisOnTheRight(derived());
  return derived();
}

/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
  *
  * Example: \include MatrixBase_applyOnTheRight.cpp
  * Output: \verbinclude MatrixBase_applyOnTheRight.out
  */
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
{
  other.derived().applyThisOnTheRight(derived());
}

/** replaces \c *this by \a other * \c *this.
  *
  * Example: \include MatrixBase_applyOnTheLeft.cpp
  * Output: \verbinclude MatrixBase_applyOnTheLeft.out
  */
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
{
  other.derived().applyThisOnTheLeft(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIXBASE_H