Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/**
* \file Math.cpp
* \brief Implementation for GeographicLib::Math class
*
* Copyright (c) Charles Karney (2015-2019) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#include "Math.hpp"
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions
# pragma warning (disable: 4127)
#endif
namespace GeographicLib {
using namespace std;
void Math::dummy() {
GEOGRAPHICLIB_STATIC_ASSERT(GEOGRAPHICLIB_PRECISION >= 1 &&
GEOGRAPHICLIB_PRECISION <= 5,
"Bad value of precision");
}
int Math::digits() {
#if GEOGRAPHICLIB_PRECISION != 5
return std::numeric_limits<real>::digits;
#else
return std::numeric_limits<real>::digits();
#endif
}
int Math::set_digits(int ndigits) {
#if GEOGRAPHICLIB_PRECISION != 5
(void)ndigits;
#else
mpfr::mpreal::set_default_prec(ndigits >= 2 ? ndigits : 2);
#endif
return digits();
}
int Math::digits10() {
#if GEOGRAPHICLIB_PRECISION != 5
return std::numeric_limits<real>::digits10;
#else
return std::numeric_limits<real>::digits10();
#endif
}
int Math::extra_digits() {
return
digits10() > std::numeric_limits<double>::digits10 ?
digits10() - std::numeric_limits<double>::digits10 : 0;
}
template<typename T> T Math::hypot(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::hypot; return hypot(x, y);
#else
x = abs(x); y = abs(y);
if (x < y) std::swap(x, y); // Now x >= y >= 0
y /= (x != 0 ? x : 1);
return x * sqrt(1 + y * y);
// For an alternative (square-root free) method see
// C. Moler and D. Morrision (1983) https://doi.org/10.1147/rd.276.0577
// and A. A. Dubrulle (1983) https://doi.org/10.1147/rd.276.0582
#endif
}
template<typename T> T Math::expm1(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::expm1; return expm1(x);
#else
GEOGRAPHICLIB_VOLATILE T
y = exp(x),
z = y - 1;
// The reasoning here is similar to that for log1p. The expression
// mathematically reduces to exp(x) - 1, and the factor z/log(y) = (y -
// 1)/log(y) is a slowly varying quantity near y = 1 and is accurately
// computed.
return abs(x) > 1 ? z : (z == 0 ? x : x * z / log(y));
#endif
}
template<typename T> T Math::log1p(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::log1p; return log1p(x);
#else
GEOGRAPHICLIB_VOLATILE T
y = 1 + x,
z = y - 1;
// Here's the explanation for this magic: y = 1 + z, exactly, and z
// approx x, thus log(y)/z (which is nearly constant near z = 0) returns
// a good approximation to the true log(1 + x)/x. The multiplication x *
// (log(y)/z) introduces little additional error.
return z == 0 ? x : x * log(y) / z;
#endif
}
template<typename T> T Math::asinh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::asinh; return asinh(x);
#else
T y = abs(x); // Enforce odd parity
y = log1p(y * (1 + y/(hypot(T(1), y) + 1)));
return x > 0 ? y : (x < 0 ? -y : x); // asinh(-0.0) = -0.0
#endif
}
template<typename T> T Math::atanh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::atanh; return atanh(x);
#else
T y = abs(x); // Enforce odd parity
y = log1p(2 * y/(1 - y))/2;
return x > 0 ? y : (x < 0 ? -y : x); // atanh(-0.0) = -0.0
#endif
}
template<typename T> T Math::copysign(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::copysign; return copysign(x, y);
#else
// NaN counts as positive
return abs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
#endif
}
template<typename T> T Math::cbrt(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::cbrt; return cbrt(x);
#else
T y = pow(abs(x), 1/T(3)); // Return the real cube root
return x > 0 ? y : (x < 0 ? -y : x); // cbrt(-0.0) = -0.0
#endif
}
template<typename T> T Math::remainder(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::remainder; return remainder(x, y);
#else
y = abs(y); // The result doesn't depend on the sign of y
T z = fmod(x, y);
if (z == 0)
// This shouldn't be necessary. However, before version 14 (2015),
// Visual Studio had problems dealing with -0.0. Specifically
// VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
// python 2.7 on Windows 32-bit machines has the same problem.
z = copysign(z, x);
else if (2 * abs(z) == y)
z -= fmod(x, 2 * y) - z; // Implement ties to even
else if (2 * abs(z) > y)
z += (z < 0 ? y : -y); // Fold remaining cases to (-y/2, y/2)
return z;
#endif
}
template<typename T> T Math::remquo(T x, T y, int* n) {
// boost::math::remquo doesn't handle nans correctly
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3
using std::remquo; return remquo(x, y, n);
#else
T z = remainder(x, y);
if (n) {
T
a = remainder(x, 2 * y),
b = remainder(x, 4 * y),
c = remainder(x, 8 * y);
*n = (a > z ? 1 : (a < z ? -1 : 0));
*n += (b > a ? 2 : (b < a ? -2 : 0));
*n += (c > b ? 4 : (c < b ? -4 : 0));
if (y < 0) *n *= -1;
if (y != 0) {
if (x/y > 0 && *n <= 0)
*n += 8;
else if (x/y < 0 && *n >= 0)
*n -= 8;
}
}
return z;
#endif
}
template<typename T> T Math::round(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::round; return round(x);
#else
// The handling of corner cases is copied from boost; see
// https://github.com/boostorg/math/pull/8
// with improvements to return -0 when appropriate.
if (0 < x && x < T(0.5))
return +T(0);
else if (0 > x && x > -T(0.5))
return -T(0);
else if (x > 0) {
T t = ceil(x);
return t - x > T(0.5) ? t - 1 : t;
} else if (x < 0) {
T t = floor(x);
return x - t > T(0.5) ? t + 1 : t;
} else // +/-0 and NaN
return x; // Retain sign of 0
#endif
}
template<typename T> long Math::lround(T x) {
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 5
using std::lround; return lround(x);
#else
// Default value for overflow + NaN + (x == LONG_MIN)
long r = std::numeric_limits<long>::min();
x = round(x);
if (abs(x) < -T(r)) // Assume T(LONG_MIN) is exact
r = long(x);
return r;
#endif
}
template<typename T> T Math::fma(T x, T y, T z) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::fma; return fma(x, y, z);
#else
return x * y + z;
#endif
}
template<typename T> T Math::sum(T u, T v, T& t) {
GEOGRAPHICLIB_VOLATILE T s = u + v;
GEOGRAPHICLIB_VOLATILE T up = s - v;
GEOGRAPHICLIB_VOLATILE T vpp = s - up;
up -= u;
vpp -= v;
t = -(up + vpp);
// u + v = s + t
// = round(u + v) + t
return s;
}
template<typename T> T Math::AngRound(T x) {
static const T z = 1/T(16);
if (x == 0) return 0;
GEOGRAPHICLIB_VOLATILE T y = abs(x);
// The compiler mustn't "simplify" z - (z - y) to y
y = y < z ? z - (z - y) : y;
return x < 0 ? -y : y;
}
template<typename T> void Math::sincosd(T x, T& sinx, T& cosx) {
// In order to minimize round-off errors, this function exactly reduces
// the argument to the range [-45, 45] before converting it to radians.
T r; int q;
// N.B. the implementation of remquo in glibc pre 2.22 were buggy. See
// https://sourceware.org/bugzilla/show_bug.cgi?id=17569
// This was fixed in version 2.22 on 2015-08-05
r = remquo(x, T(90), &q); // now abs(r) <= 45
r *= degree<T>();
// g++ -O turns these two function calls into a call to sincos
T s = sin(r), c = cos(r);
#if defined(_MSC_VER) && _MSC_VER < 1900
// Before version 14 (2015), Visual Studio had problems dealing
// with -0.0. Specifically
// VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
// VC 12 and 64-bit compile: sin(-0.0) -> +0.0
// AngNormalize has a similar fix.
// python 2.7 on Windows 32-bit machines has the same problem.
if (x == 0) s = x;
#endif
switch (unsigned(q) & 3U) {
case 0U: sinx = s; cosx = c; break;
case 1U: sinx = c; cosx = -s; break;
case 2U: sinx = -s; cosx = -c; break;
default: sinx = -c; cosx = s; break; // case 3U
}
// Set sign of 0 results. -0 only produced for sin(-0)
if (x != 0) { sinx += T(0); cosx += T(0); }
}
template<typename T> T Math::sind(T x) {
// See sincosd
T r; int q;
r = remquo(x, T(90), &q); // now abs(r) <= 45
r *= degree<T>();
unsigned p = unsigned(q);
r = p & 1U ? cos(r) : sin(r);
if (p & 2U) r = -r;
if (x != 0) r += T(0);
return r;
}
template<typename T> T Math::cosd(T x) {
// See sincosd
T r; int q;
r = remquo(x, T(90), &q); // now abs(r) <= 45
r *= degree<T>();
unsigned p = unsigned(q + 1);
r = p & 1U ? cos(r) : sin(r);
if (p & 2U) r = -r;
return T(0) + r;
}
template<typename T> T Math::tand(T x) {
static const T overflow = 1 / sq(std::numeric_limits<T>::epsilon());
T s, c;
sincosd(x, s, c);
return c != 0 ? s / c : (s < 0 ? -overflow : overflow);
}
template<typename T> T Math::atan2d(T y, T x) {
// In order to minimize round-off errors, this function rearranges the
// arguments so that result of atan2 is in the range [-pi/4, pi/4] before
// converting it to degrees and mapping the result to the correct
// quadrant.
int q = 0;
if (abs(y) > abs(x)) { std::swap(x, y); q = 2; }
if (x < 0) { x = -x; ++q; }
// here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
T ang = atan2(y, x) / degree<T>();
switch (q) {
// Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
// atan2d will not be called with y = -0. If need be, include
//
// case 0: ang = 0 + ang; break;
//
// and handle mpfr as in AngRound.
case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
case 2: ang = 90 - ang; break;
case 3: ang = -90 + ang; break;
}
return ang;
}
template<typename T> T Math::atand(T x)
{ return atan2d(x, T(1)); }
template<typename T> T Math::eatanhe(T x, T es) {
return es > T(0) ? es * atanh(es * x) : -es * atan(es * x);
}
template<typename T> T Math::taupf(T tau, T es) {
T tau1 = hypot(T(1), tau),
sig = sinh( eatanhe(tau / tau1, es ) );
return hypot(T(1), sig) * tau - sig * tau1;
}
template<typename T> T Math::tauf(T taup, T es) {
const int numit = 5;
const T tol = sqrt(numeric_limits<T>::epsilon()) / T(10);
T e2m = T(1) - sq(es),
// To lowest order in e^2, taup = (1 - e^2) * tau = _e2m * tau; so use
// tau = taup/_e2m as a starting guess. (This starting guess is the
// geocentric latitude which, to first order in the flattening, is equal
// to the conformal latitude.) Only 1 iteration is needed for |lat| <
// 3.35 deg, otherwise 2 iterations are needed. If, instead, tau = taup
// is used the mean number of iterations increases to 1.99 (2 iterations
// are needed except near tau = 0).
tau = taup/e2m,
stol = tol * max(T(1), abs(taup));
// min iterations = 1, max iterations = 2; mean = 1.94
for (int i = 0; i < numit || GEOGRAPHICLIB_PANIC; ++i) {
T taupa = taupf(tau, es),
dtau = (taup - taupa) * (1 + e2m * sq(tau)) /
( e2m * hypot(T(1), tau) * hypot(T(1), taupa) );
tau += dtau;
if (!(abs(dtau) >= stol))
break;
}
return tau;
}
template<typename T> bool Math::isfinite(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::isfinite; return isfinite(x);
#else
#if defined(_MSC_VER)
return abs(x) <= (std::numeric_limits<T>::max)();
#else
// There's a problem using MPFR C++ 3.6.3 and g++ -std=c++14 (reported on
// 2015-05-04) with the parens around std::numeric_limits<T>::max. Of
// course, these parens are only needed to deal with Windows stupidly
// defining max as a macro. So don't insert the parens on non-Windows
// platforms.
return abs(x) <= std::numeric_limits<T>::max();
#endif
#endif
}
template<typename T> T Math::NaN() {
#if defined(_MSC_VER)
return std::numeric_limits<T>::has_quiet_NaN ?
std::numeric_limits<T>::quiet_NaN() :
(std::numeric_limits<T>::max)();
#else
return std::numeric_limits<T>::has_quiet_NaN ?
std::numeric_limits<T>::quiet_NaN() :
std::numeric_limits<T>::max();
#endif
}
template<typename T> bool Math::isnan(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::isnan; return isnan(x);
#else
return x != x;
#endif
}
template<typename T> T Math::infinity() {
#if defined(_MSC_VER)
return std::numeric_limits<T>::has_infinity ?
std::numeric_limits<T>::infinity() :
(std::numeric_limits<T>::max)();
#else
return std::numeric_limits<T>::has_infinity ?
std::numeric_limits<T>::infinity() :
std::numeric_limits<T>::max();
#endif
}
/// \cond SKIP
// Instantiate
template Math::real GEOGRAPHICLIB_EXPORT
Math::hypot<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::expm1<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::log1p<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::asinh<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::atanh<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::cbrt<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::remainder<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::remquo<Math::real>(Math::real, Math::real, int*);
template Math::real GEOGRAPHICLIB_EXPORT
Math::round<Math::real>(Math::real);
template long GEOGRAPHICLIB_EXPORT
Math::lround<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::copysign<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::fma<Math::real>(Math::real, Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::sum<Math::real>(Math::real, Math::real, Math::real&);
template Math::real GEOGRAPHICLIB_EXPORT
Math::AngRound<Math::real>(Math::real);
template void GEOGRAPHICLIB_EXPORT
Math::sincosd<Math::real>(Math::real, Math::real&, Math::real&);
template Math::real GEOGRAPHICLIB_EXPORT
Math::sind<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::cosd<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::tand<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::atan2d<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::atand<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::eatanhe<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::taupf<Math::real>(Math::real, Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::tauf<Math::real>(Math::real, Math::real);
template bool GEOGRAPHICLIB_EXPORT
Math::isfinite<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::NaN<Math::real>();
template bool GEOGRAPHICLIB_EXPORT
Math::isnan<Math::real>(Math::real);
template Math::real GEOGRAPHICLIB_EXPORT
Math::infinity<Math::real>();
#if GEOGRAPHICLIB_PRECISION != 2
// Always have double versions available
template double GEOGRAPHICLIB_EXPORT
Math::hypot<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::expm1<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::log1p<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::asinh<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::atanh<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::cbrt<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::remainder<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::remquo<double>(double, double, int*);
template double GEOGRAPHICLIB_EXPORT
Math::round<double>(double);
template long GEOGRAPHICLIB_EXPORT
Math::lround<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::copysign<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::fma<double>(double, double, double);
template double GEOGRAPHICLIB_EXPORT
Math::sum<double>(double, double, double&);
template double GEOGRAPHICLIB_EXPORT
Math::AngRound<double>(double);
template void GEOGRAPHICLIB_EXPORT
Math::sincosd<double>(double, double&, double&);
template double GEOGRAPHICLIB_EXPORT
Math::sind<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::cosd<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::tand<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::atan2d<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::atand<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::eatanhe<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::taupf<double>(double, double);
template double GEOGRAPHICLIB_EXPORT
Math::tauf<double>(double, double);
template bool GEOGRAPHICLIB_EXPORT
Math::isfinite<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::NaN<double>();
template bool GEOGRAPHICLIB_EXPORT
Math::isnan<double>(double);
template double GEOGRAPHICLIB_EXPORT
Math::infinity<double>();
#endif
#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE && GEOGRAPHICLIB_PRECISION != 3
// And always have long double versions available (as long as long double is
// a really different from double).
template long double GEOGRAPHICLIB_EXPORT
Math::hypot<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::expm1<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::log1p<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::asinh<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::atanh<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::cbrt<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::remainder<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::remquo<long double>(long double, long double, int*);
template long double GEOGRAPHICLIB_EXPORT
Math::round<long double>(long double);
template long GEOGRAPHICLIB_EXPORT
Math::lround<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::copysign<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::fma<long double>(long double, long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::sum<long double>(long double, long double, long double&);
template long double GEOGRAPHICLIB_EXPORT
Math::AngRound<long double>(long double);
template void GEOGRAPHICLIB_EXPORT
Math::sincosd<long double>(long double, long double&, long double&);
template long double GEOGRAPHICLIB_EXPORT
Math::sind<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::cosd<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::tand<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::atan2d<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::atand<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::eatanhe<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::taupf<long double>(long double, long double);
template long double GEOGRAPHICLIB_EXPORT
Math::tauf<long double>(long double, long double);
template bool GEOGRAPHICLIB_EXPORT
Math::isfinite<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::NaN<long double>();
template bool GEOGRAPHICLIB_EXPORT
Math::isnan<long double>(long double);
template long double GEOGRAPHICLIB_EXPORT
Math::infinity<long double>();
#endif
// Also we need int versions for Utility::nummatch
template int GEOGRAPHICLIB_EXPORT Math::NaN<int>();
template int GEOGRAPHICLIB_EXPORT Math::infinity<int>();
/// \endcond
} // namespace GeographicLib