Newer
Older
/*=====================================================================
QGroundControl Open Source Ground Control Station
(c) 2009, 2014 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
This file is part of the QGROUNDCONTROL project
QGROUNDCONTROL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QGROUNDCONTROL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/// @file
/// @brief PX4 RC Calibration Widget
/// @author Don Gagne <don@thegagnes.com
#include <QMessageBox>
#include "PX4RCCalibration.h"
#include "UASManager.h"
const int PX4RCCalibration::_updateInterval = 150; ///< Interval for timer which updates radio channel widgets
const int PX4RCCalibration::_rcCalPWMCenterPoint = ((PX4RCCalibration::_rcCalPWMValidMaxValue - PX4RCCalibration::_rcCalPWMValidMinValue) / 2.0f) + PX4RCCalibration::_rcCalPWMValidMinValue;
const int PX4RCCalibration::_rcCalPWMValidMinValue = 1300; ///< Largest valid minimum PWM Min range value
const int PX4RCCalibration::_rcCalPWMValidMaxValue = 1700; ///< Smallest valid maximum PWM Max range value
const int PX4RCCalibration::_rcCalPWMDefaultMinValue = 1000; ///< Default value for Min if not set
const int PX4RCCalibration::_rcCalPWMDefaultMaxValue = 2000; ///< Default value for Max if not set
const int PX4RCCalibration::_rcCalRoughCenterDelta = 50; ///< Delta around center point which is considered to be roughly centered
const int PX4RCCalibration::_rcCalMoveDelta = 300; ///< Amount of delta past center which is considered stick movement
const int PX4RCCalibration::_rcCalSettleDelta = 20; ///< Amount of delta which is considered no stick movement
const int PX4RCCalibration::_rcCalMinDelta = 100; ///< Amount of delta allowed around min value to consider channel at min
const int PX4RCCalibration::_stickDetectSettleMSecs = 500;
const char* PX4RCCalibration::_imageFilePrefix = ":files/images/px4/calibration/";
const char* PX4RCCalibration::_imageHome = "radioHome.png";
const char* PX4RCCalibration::_imageThrottleUp = "radioThrottleUp.png";
const char* PX4RCCalibration::_imageThrottleDown = "radioThrottleDown.png";
const char* PX4RCCalibration::_imageYawLeft = "radioYawLeft.png";
const char* PX4RCCalibration::_imageYawRight = "radioYawRight";
const char* PX4RCCalibration::_imageRollLeft = "radioRollLeft.png";
const char* PX4RCCalibration::_imageRollRight = "radioRollRight.png";
const char* PX4RCCalibration::_imagePitchUp = "radioPitchUp";
const char* PX4RCCalibration::_imagePitchDown = "radioPitchDown";
const char* PX4RCCalibration::_imageSwitchMinMax = "radioSwitchMinMax";
const struct PX4RCCalibration::FunctionInfo PX4RCCalibration::_rgFunctionInfo[PX4RCCalibration::rcCalFunctionMax] = {
//Parameter required
{ "RC_MAP_ROLL" },
{ "RC_MAP_PITCH" },
{ "RC_MAP_YAW" },
{ "RC_MAP_THROTTLE" },
{ "RC_MAP_MODE_SW" },
{ "RC_MAP_POSCTL_SW" },
{ "RC_MAP_LOITER_SW" },
{ "RC_MAP_RETURN_SW" },
{ "RC_MAP_FLAPS" },
{ "RC_MAP_AUX1" },
{ "RC_MAP_AUX2" },
};
PX4RCCalibration::PX4RCCalibration(QWidget *parent) :
QWidget(parent),
_chanCount(0),
_rcCalState(rcCalStateChannelWait),
_mav(NULL),
_paramMgr(NULL),
_parameterListUpToDateSignalled(false),
_ui(new Ui::PX4RCCalibration),
_unitTestMode(false)
// Initialize arrays of monitor control pointers. This allows for more efficient code writing using "for" loops.
for (int chan=0; chan<_chanMax; chan++) {
radioWidgetName = "channel%1Value";
RCValueWidget* monitorWidget = findChild<RCValueWidget*>(radioWidgetName.arg(chan+1));
Q_ASSERT(monitorWidget);
_rgRCValueMonitorWidget[chan] = monitorWidget;
monitorWidget->setSmallMode(); // Monitor display uses small display
radioWidgetName = "channel%1Label";
QLabel* monitorLabel = findChild<QLabel*>(radioWidgetName.arg(chan+1));
Q_ASSERT(monitorLabel);
_rgRCValueMonitorLabel[chan] = monitorLabel;
// Initialize array of attitude controls. Order here doesn't matter.
_rgAttitudeControl[0].function = rcCalFunctionThrottle;
_rgAttitudeControl[0].valueWidget = _ui->throttleValue;
_rgAttitudeControl[1].function = rcCalFunctionYaw;
_rgAttitudeControl[1].valueWidget = _ui->yawValue;
_rgAttitudeControl[2].function = rcCalFunctionRoll;
_rgAttitudeControl[2].valueWidget = _ui->rollValue;
_rgAttitudeControl[3].function = rcCalFunctionPitch;
_rgAttitudeControl[3].valueWidget = _ui->pitchValue;
_rgAttitudeControl[4].function = rcCalFunctionFlaps;
_rgAttitudeControl[4].valueWidget = _ui->flapsValue;
_setActiveUAS(UASManager::instance()->getActiveUAS());
// Connect signals
bool fSucceeded;
Q_UNUSED(fSucceeded);
fSucceeded = connect(UASManager::instance(), SIGNAL(activeUASSet(UASInterface*)), this, SLOT(_setActiveUAS(UASInterface*)));
Q_ASSERT(fSucceeded);
connect(_ui->spektrumBind, &QPushButton::clicked, this, &PX4RCCalibration::_spektrumBind);
_updateTimer.setInterval(150);
_updateTimer.start();
connect(&_updateTimer, &QTimer::timeout, this, &PX4RCCalibration::_updateView);
connect(_ui->rcCalCancel, &QPushButton::clicked, this, &PX4RCCalibration::_stopCalibration);
connect(_ui->rcCalSkip, &QPushButton::clicked, this, &PX4RCCalibration::_skipButton);
connect(_ui->rcCalNext, &QPushButton::clicked, this, &PX4RCCalibration::_nextButton);
connect(_ui->rollTrim, &QPushButton::clicked, this, &PX4RCCalibration::_trimNYI);
connect(_ui->yawTrim, &QPushButton::clicked, this, &PX4RCCalibration::_trimNYI);
connect(_ui->pitchTrim, &QPushButton::clicked, this, &PX4RCCalibration::_trimNYI);
connect(_ui->throttleTrim, &QPushButton::clicked, this, &PX4RCCalibration::_trimNYI);
_stopCalibration();
}
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/// @brief Returns the state machine entry for the specified state.
const PX4RCCalibration::stateMachineEntry* PX4RCCalibration::_getStateMachineEntry(int step)
{
static const char* msgBegin = "Lower the Throttle stick all the way down as shown in diagram.\nReset all transmitter trims to center.\n\n"
"It is recommended to disconnect all motors for additional safety, however, the system is designed to not arm during the calibration.\n\n"
"Click Next to continue";
static const char* msgThrottleUp = "Move the Throttle stick all the way up and hold it there...";
static const char* msgThrottleDown = "Move the Throttle stick all the way down and leave it there...";
static const char* msgYawLeft = "Move the Yaw stick all the way to the left and hold it there...";
static const char* msgYawRight = "Move the Yaw stick all the way to the right and hold it there...";
static const char* msgRollLeft = "Move the Roll stick all the way to the left and hold it there...";
static const char* msgRollRight = "Move the Roll stick all the way to the right and hold it there...";
static const char* msgPitchDown = "Move the Pitch stick all the way down and hold it there...";
static const char* msgPitchUp = "Move the Pitch stick all the way up and hold it there...";
static const char* msgPitchCenter = "Allow the Pitch stick to move back to center...";
static const char* msgModeSwitch = "Next we will assign the channel for the Mode Switch. Move the switch or dial up and down to select the channel.";
static const char* msgPosCtlSwitch = "Next we will assign the channel for the PosCtl Switch. Move the switch or dial up and down to select the channel.\n\n"
"You can click Skip if you don't want to assign this switch.";
static const char* msgLoiterSwitch = "Next we will assign the channel for the Loiter Switch. Move the switch or dial up and down to select the channel.\n\n"
"You can click Skip if you don't want to assign this switch.";
static const char* msgReturnSwitch = "Next we will assign the channel for the Return Switch. Move the switch or dial up and down to select the channel.\n\n"
"You can click Skip if you don't want to assign this switch.";
static const char* msgAux1Switch = "Move the switch or dial you want to use for Aux1.\n\n"
"You can click Skip if you don't want to assign.";
static const char* msgAux2Switch = "Move the switch or dial you want to use for Aux2.\n\n"
"You can click Skip if you don't want to assign.";
static const char* msgSwitchMinMax = "Move all the transmitter switches and/or dials back and forth to their extreme positions.";
static const char* msgFlapsDetect = "Move the switch or dial you want to use for Flaps back and forth a few times. "
"Then leave the switch/dial at the position you want to use for Flaps fully extended.\n\n"
"Click Next to continue.\n"
"If you won't be using Flaps, click Skip.";
static const char* msgFlapsUp = "Move the switch or dial you want to use for Flaps to the position you want to use for Flaps fully retracted.";
static const char* msgComplete = "All settings have been captured. Click Next to write the new parameters to your board.";
static const stateMachineEntry rgStateMachine[] = {
//Function
{ rcCalFunctionMax, msgBegin, _imageHome, &PX4RCCalibration::_inputCenterWaitBegin, &PX4RCCalibration::_saveAllTrims, NULL },
{ rcCalFunctionThrottle, msgThrottleUp, _imageThrottleUp, &PX4RCCalibration::_inputStickDetect, NULL, NULL },
{ rcCalFunctionThrottle, msgThrottleDown, _imageThrottleDown, &PX4RCCalibration::_inputStickMin, NULL, NULL },
{ rcCalFunctionYaw, msgYawRight, _imageYawRight, &PX4RCCalibration::_inputStickDetect, NULL, NULL },
{ rcCalFunctionYaw, msgYawLeft, _imageYawLeft, &PX4RCCalibration::_inputStickMin, NULL, NULL },
{ rcCalFunctionRoll, msgRollRight, _imageRollRight, &PX4RCCalibration::_inputStickDetect, NULL, NULL },
{ rcCalFunctionRoll, msgRollLeft, _imageRollLeft, &PX4RCCalibration::_inputStickMin, NULL, NULL },
{ rcCalFunctionPitch, msgPitchUp, _imagePitchUp, &PX4RCCalibration::_inputStickDetect, NULL, NULL },
{ rcCalFunctionPitch, msgPitchDown, _imagePitchDown, &PX4RCCalibration::_inputStickMin, NULL, NULL },
{ rcCalFunctionPitch, msgPitchCenter, _imageHome, &PX4RCCalibration::_inputCenterWait, NULL, NULL },
{ rcCalFunctionMax, msgSwitchMinMax, _imageSwitchMinMax, &PX4RCCalibration::_inputSwitchMinMax, &PX4RCCalibration::_nextStep, NULL },
{ rcCalFunctionFlaps, msgFlapsDetect, _imageThrottleDown, &PX4RCCalibration::_inputFlapsDetect, &PX4RCCalibration::_saveFlapsDown, &PX4RCCalibration::_skipFlaps },
{ rcCalFunctionFlaps, msgFlapsUp, _imageThrottleDown, &PX4RCCalibration::_inputFlapsUp, NULL, NULL },
{ rcCalFunctionModeSwitch, msgModeSwitch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, NULL },
{ rcCalFunctionPosCtlSwitch, msgPosCtlSwitch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, &PX4RCCalibration::_nextStep },
{ rcCalFunctionLoiterSwitch, msgLoiterSwitch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, &PX4RCCalibration::_nextStep },
{ rcCalFunctionReturnSwitch, msgReturnSwitch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, &PX4RCCalibration::_nextStep },
{ rcCalFunctionAux1, msgAux1Switch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, &PX4RCCalibration::_nextStep },
{ rcCalFunctionAux2, msgAux2Switch, _imageThrottleDown, &PX4RCCalibration::_inputSwitchDetect, NULL, &PX4RCCalibration::_nextStep },
{ rcCalFunctionMax, msgComplete, _imageThrottleDown, NULL, &PX4RCCalibration::_writeCalibration, NULL },
};
Q_ASSERT(step >=0 && step < (int)(sizeof(rgStateMachine) / sizeof(rgStateMachine[0])));
return &rgStateMachine[step];
}
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
void PX4RCCalibration::_nextStep(void)
{
_currentStep++;
_setupCurrentState();
}
/// @brief Sets up the state machine according to the current step from _currentStep.
void PX4RCCalibration::_setupCurrentState(void)
{
const stateMachineEntry* state = _getStateMachineEntry(_currentStep);
_ui->rcCalStatus->setText(state->instructions);
_ui->radioIcon->setPixmap(QPixmap(QString(_imageFilePrefix) + state->image));
_stickDetectChannel = _chanMax;
_stickDetectSettleStarted = false;
_rcCalSaveCurrentValues();
_ui->rcCalNext->setEnabled(state->nextFn != NULL);
_ui->rcCalSkip->setEnabled(state->skipFn != NULL);
}
/// @brief This routine is called whenever a raw value for an RC channel changes. It will call the input
/// function as specified by the state machine.
/// @param chan RC channel on which signal is coming from (0-based)
/// @param fval Current value for channel
void PX4RCCalibration::_remoteControlChannelRawChanged(int chan, float fval)
{
Q_ASSERT(chan >= 0 && chan <= _chanMax);
// We always update raw values
_rcRawValue[chan] = fval;
//qDebug() << "Raw value" << chan << fval;
if (_currentStep == -1) {
// Track the receiver channel count by keeping track of how many channels we see
if (chan + 1 > (int)_chanCount) {
_chanCount = chan + 1;
_ui->receiverInfo->setText(tr("%1 channel receiver").arg(_chanCount));
if (_chanCount < _chanMinimum) {
_ui->rcCalStatus->setText(tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum));
} else {
_ui->rcCalStatus->clear();
}
}
}
if (_currentStep != -1) {
const stateMachineEntry* state = _getStateMachineEntry(_currentStep);
Q_ASSERT(state);
if (state->rcInputFn) {
(this->*state->rcInputFn)(state->function, chan, fval);
}
}
}
void PX4RCCalibration::_nextButton(void)
{
if (_currentStep == -1) {
// Need to have enough channels
if (_chanCount < _chanMinimum) {
if (_unitTestMode) {
emit nextButtonMessageBoxDisplayed();
} else {
QMessageBox::warning(this, tr("Receiver"), tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum));
}
return;
}
_startCalibration();
} else {
const stateMachineEntry* state = _getStateMachineEntry(_currentStep);
Q_ASSERT(state);
Q_ASSERT(state->nextFn);
(this->*state->nextFn)();
}
}
void PX4RCCalibration::_skipButton(void)
{
Q_ASSERT(_currentStep != -1);
const stateMachineEntry* state = _getStateMachineEntry(_currentStep);
Q_ASSERT(state);
Q_ASSERT(state->skipFn);
(this->*state->skipFn)();
}
void PX4RCCalibration::_trimNYI(void)
{
QMessageBox::warning(this, tr("Set Trim"), tr("Setting individual trims is not yet implemented. You will need to go through full calibration to set trims."));
}
void PX4RCCalibration::_saveAllTrims(void)
{
// We save all trims as the first step. At this point no channels are mapped but it should still
// allow us to get good trims for the roll/pitch/yaw/throttle even though we don't know which
// channels they are yet. AS we continue through the process the other channels will get their
// trims reset to correct values.
for (int i=0; i<_chanCount; i++) {
//qDebug() << "_saveAllTrims trim" << _rcRawValue[i];
_rgChannelInfo[i].rcTrim = _rcRawValue[i];
}
_nextStep();
}
/// @brief Waits for the sticks to be centered, enabling Next when done.
void PX4RCCalibration::_inputCenterWaitBegin(enum rcCalFunctions function, int chan, int value)
{
Q_UNUSED(function);
Q_UNUSED(chan);
Q_UNUSED(value);
// FIXME: Doesn't wait for center
_ui->rcCalNext->setEnabled(true);
}
bool PX4RCCalibration::_stickSettleComplete(int value)
{
// We are waiting for the stick to settle out to a max position
if (abs(_stickDetectValue - value) > _rcCalSettleDelta) {
// Stick is moving too much to consider stopped
//qDebug() << "_stickSettleComplete still moving, _stickDetectValue:value" << _stickDetectValue << value;
_stickDetectValue = value;
_stickDetectSettleStarted = false;
} else {
// Stick is still positioned within the specified small range
if (_stickDetectSettleStarted) {
// We have already started waiting
if (_stickDetectSettleElapsed.elapsed() > _stickDetectSettleMSecs) {
// Stick has stayed positioned in one place long enough, detection is complete.
return true;
}
} else {
// Start waiting for the stick to stay settled for _stickDetectSettleWaitMSecs msecs
//qDebug() << "_stickSettleComplete starting settle timer, _stickDetectValue:value" << _stickDetectValue << value;
_stickDetectSettleStarted = true;
_stickDetectSettleElapsed.start();
}
}
return false;
}
void PX4RCCalibration::_inputStickDetect(enum rcCalFunctions function, int channel, int value)
{
//qDebug() << "_inputStickDetect function:channel:value" << function << channel << value;
// If this channel is already used in a mapping we can't use it again
if (_rgChannelInfo[channel].function != rcCalFunctionMax) {
return;
}
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
if (_stickDetectChannel == _chanMax) {
// We have not detected enough movement on a channel yet
if (abs(_rcValueSave[channel] - value) > _rcCalMoveDelta) {
// Stick has moved far enough to consider it as being selected for the function
//qDebug() << "_inputStickDetect starting settle wait, function:channel:value" << function << channel << value;
// Setup up to detect stick being pegged to min or max value
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
} else if (channel == _stickDetectChannel) {
if (_stickSettleComplete(value)) {
ChannelInfo* info = &_rgChannelInfo[channel];
//qDebug() << "_inputStickDetect settle complete, function:channel:value" << function << channel << value;
// Stick detection is complete. Stick should be at max position.
// Map the channel to the function
_rgFunctionChannelMapping[function] = channel;
info->function = function;
// Channel should be at max value, if it is below initial set point the the channel is reversed.
info->reversed = value < _rcValueSave[channel];
if (info->reversed) {
_rgRCValueMonitorWidget[channel]->setMin(value);
_rgRCValueMonitorWidget[channel]->setMinValid(true);
_rgChannelInfo[channel].rcMin = value;
} else {
_rgRCValueMonitorWidget[channel]->setMax(value);
_rgRCValueMonitorWidget[channel]->setMaxValid(true);
_rgChannelInfo[channel].rcMax = value;
}
_nextStep();
}
}
}
void PX4RCCalibration::_inputStickMin(enum rcCalFunctions function, int channel, int value)
{
// We only care about the channel mapped to the function we are working on
if (_rgFunctionChannelMapping[function] != channel) {
return;
}
if (_stickDetectChannel == _chanMax) {
// Setup up to detect stick being pegged to extreme position
if (_rgChannelInfo[channel].reversed) {
if (value > _rcCalPWMCenterPoint + _rcCalMoveDelta) {
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
} else {
if (value < _rcCalPWMCenterPoint - _rcCalMoveDelta) {
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
}
} else {
// We are waiting for the selected channel to settle out
if (_stickSettleComplete(value)) {
ChannelInfo* info = &_rgChannelInfo[channel];
// Stick detection is complete. Stick should be at min position.
if (info->reversed) {
_rgRCValueMonitorWidget[channel]->setMax(value);
_rgRCValueMonitorWidget[channel]->setMaxValid(true);
_rgChannelInfo[channel].rcMax = value;
} else {
_rgRCValueMonitorWidget[channel]->setMin(value);
_rgRCValueMonitorWidget[channel]->setMinValid(true);
_rgChannelInfo[channel].rcMin = value;
}
_nextStep();
}
}
}
void PX4RCCalibration::_inputCenterWait(enum rcCalFunctions function, int channel, int value)
{
// We only care about the channel mapped to the function we are working on
if (_rgFunctionChannelMapping[function] != channel) {
return;
}
if (_stickDetectChannel == _chanMax) {
// Sticks have not yet moved close enough to center
if (abs(_rcCalPWMCenterPoint - value) < _rcCalRoughCenterDelta) {
// Stick has moved close enough to center that we can start waiting for it to settle
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
} else {
if (_stickSettleComplete(value)) {
_nextStep();
}
}
}
/// @brief Saves min/max for non-mapped channels
void PX4RCCalibration::_inputSwitchMinMax(enum rcCalFunctions function, int channel, int value)
{
Q_UNUSED(function);
// If the channel is mapped we already have min/max
if (_rgChannelInfo[channel].function != rcCalFunctionMax) {
return;
}
if (abs(_rcCalPWMCenterPoint - value) > _rcCalMoveDelta) {
// Stick has moved far enough from center to consider for min/max
if (value < _rcCalPWMCenterPoint) {
int minValue = qMin(_rgChannelInfo[channel].rcMin, value);
//qDebug() << "_inputSwitchMinMax setting min channel:min" << channel << minValue;
_rgChannelInfo[channel].rcMin = minValue;
_rgRCValueMonitorWidget[channel]->setMin(minValue);
_rgRCValueMonitorWidget[channel]->setMinValid(true);
} else {
int maxValue = qMax(_rgChannelInfo[channel].rcMax, value);
//qDebug() << "_inputSwitchMinMax setting max channel:max" << channel << maxValue;
_rgChannelInfo[channel].rcMax = maxValue;
_rgRCValueMonitorWidget[channel]->setMax(maxValue);
_rgRCValueMonitorWidget[channel]->setMaxValid(true);
}
}
}
void PX4RCCalibration::_skipFlaps(void)
{
// Flaps channel may have been identified. Clear it out.
for (int i=0; i<_chanCount; i++) {
if (_rgChannelInfo[i].function == PX4RCCalibration::rcCalFunctionFlaps) {
_rgChannelInfo[i].function = rcCalFunctionMax;
}
}
_rgFunctionChannelMapping[PX4RCCalibration::rcCalFunctionFlaps] = _chanMax;
// Skip over flap steps
_currentStep += 2;
_setupCurrentState();
}
void PX4RCCalibration::_saveFlapsDown(void)
{
int channel = _rgFunctionChannelMapping[rcCalFunctionFlaps];
if (channel == _chanMax) {
// Channel not yet mapped, still waiting for switch to move
if (_unitTestMode) {
emit nextButtonMessageBoxDisplayed();
} else {
QMessageBox::warning(this, tr("Flaps switch"), tr("Flaps switch has not yet been detected."));
}
return;
}
Q_ASSERT(channel != -1);
ChannelInfo* info = &_rgChannelInfo[channel];
int rcValue = _rcRawValue[channel];
// Switch detection is complete. Switch should be at flaps fully extended position.
// Channel should be at max value, if it is below initial set point the channel is reversed.
info->reversed = rcValue < _rcValueSave[channel];
if (info->reversed) {
_rgRCValueMonitorWidget[channel]->setMin(rcValue);
_rgRCValueMonitorWidget[channel]->setMinValid(true);
_rgChannelInfo[channel].rcMin = rcValue;
} else {
_rgRCValueMonitorWidget[channel]->setMax(rcValue);
_rgRCValueMonitorWidget[channel]->setMaxValid(true);
_rgChannelInfo[channel].rcMax = rcValue;
}
_nextStep();
}
void PX4RCCalibration::_inputFlapsUp(enum rcCalFunctions function, int channel, int value)
{
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
// FIXME: Duplication
Q_ASSERT(function == rcCalFunctionFlaps);
// We only care about the channel mapped to flaps
if (_rgFunctionChannelMapping[rcCalFunctionFlaps] != channel) {
return;
}
if (_stickDetectChannel == _chanMax) {
// Setup up to detect stick being pegged to extreme position
if (_rgChannelInfo[channel].reversed) {
if (value > _rcCalPWMCenterPoint + _rcCalMoveDelta) {
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
} else {
if (value < _rcCalPWMCenterPoint - _rcCalMoveDelta) {
_stickDetectChannel = channel;
_stickDetectInitialValue = value;
_stickDetectValue = value;
}
}
} else {
// We are waiting for the selected channel to settle out
if (_stickSettleComplete(value)) {
ChannelInfo* info = &_rgChannelInfo[channel];
// Stick detection is complete. Stick should be at min position.
if (info->reversed) {
_rgRCValueMonitorWidget[channel]->setMax(value);
_rgRCValueMonitorWidget[channel]->setMaxValid(true);
_rgChannelInfo[channel].rcMax = value;
} else {
_rgRCValueMonitorWidget[channel]->setMin(value);
_rgRCValueMonitorWidget[channel]->setMinValid(true);
_rgChannelInfo[channel].rcMin = value;
}
_nextStep();
}
}
}
void PX4RCCalibration::_switchDetect(enum rcCalFunctions function, int channel, int value, bool moveToNextStep)
{
// If this channel is already used in a mapping we can't use it again
if (_rgChannelInfo[channel].function != rcCalFunctionMax) {
return;
}
if (abs(_rcValueSave[channel] - value) > _rcCalMoveDelta) {
ChannelInfo* info = &_rgChannelInfo[channel];
// Switch has moved far enough to consider it as being selected for the function
// Map the channel to the function
_rgChannelInfo[channel].function = function;
_rgFunctionChannelMapping[function] = channel;
info->function = function;
//qDebug() << "Function:" << function << "mapped to:" << channel;
if (moveToNextStep) {
_nextStep();
}
}
}
void PX4RCCalibration::_inputSwitchDetect(enum rcCalFunctions function, int channel, int value)
{
_switchDetect(function, channel, value, true /* move to next step after detection */);
}
void PX4RCCalibration::_inputFlapsDetect(enum rcCalFunctions function, int channel, int value)
{
_switchDetect(function, channel, value, false /* do not move to next step after detection */);
}
/// @brief Resets internal calibration values to their initial state in preparation for a new calibration sequence.
void PX4RCCalibration::_resetInternalCalibrationValues(void)
{
// Set all raw channels to not reversed and center point values
for (size_t i=0; i<_chanMax; i++) {
struct ChannelInfo* info = &_rgChannelInfo[i];
info->function = rcCalFunctionMax;
info->reversed = false;
info->rcMin = PX4RCCalibration::_rcCalPWMCenterPoint;
info->rcMax = PX4RCCalibration::_rcCalPWMCenterPoint;
info->rcTrim = PX4RCCalibration::_rcCalPWMCenterPoint;
}
// Initialize function mapping to function channel not set
for (size_t i=0; i<rcCalFunctionMax; i++) {
_rgFunctionChannelMapping[i] = _chanMax;
}
_showMinMaxOnRadioWidgets(false);
/// @brief Sets internal calibration values from the stored parameters
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
void PX4RCCalibration::_setInternalCalibrationValuesFromParameters(void)
{
Q_ASSERT(_paramMgr);
if (_parameterListUpToDateSignalled) {
// Initialize all function mappings to not set
for (size_t i=0; i<_chanMax; i++) {
struct ChannelInfo* info = &_rgChannelInfo[i];
info->function = rcCalFunctionMax;
}
for (size_t i=0; i<rcCalFunctionMax; i++) {
_rgFunctionChannelMapping[i] = _chanMax;
}
// FIXME: Hardwired component id
// Pull parameters and update
QString minTpl("RC%1_MIN");
QString maxTpl("RC%1_MAX");
QString trimTpl("RC%1_TRIM");
QString revTpl("RC%1_REV");
QVariant value;
bool paramFound;
bool convertOk;
int componentId = _paramMgr->getDefaultComponentId();
for (int i = 0; i < _chanMax; ++i) {
struct ChannelInfo* info = &_rgChannelInfo[i];
paramFound = _paramMgr->getParameterValue(componentId, trimTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcTrim = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
paramFound = _paramMgr->getParameterValue(componentId, minTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcMin = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
paramFound = _paramMgr->getParameterValue(componentId, maxTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcMax = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
paramFound = _paramMgr->getParameterValue(componentId, revTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
float floatReversed = value.toFloat(&convertOk);
Q_ASSERT(convertOk);
Q_ASSERT(floatReversed == 1.0f || floatReversed == -1.0f);
info->reversed = floatReversed == -1.0f;
}
}
for (int i=0; i<rcCalFunctionMax; i++) {
int32_t paramChannel;
paramFound = _paramMgr->getParameterValue(componentId, _rgFunctionInfo[i].parameterName, value);
Q_ASSERT(paramFound);
if (paramFound) {
paramChannel = value.toInt(&convertOk);
Q_ASSERT(convertOk);
if (paramChannel != 0) {
_rgFunctionChannelMapping[i] = paramChannel - 1;
_rgChannelInfo[paramChannel - 1].function = (enum rcCalFunctions)i;
}
}
}
_showMinMaxOnRadioWidgets(true);
_showTrimOnRadioWidgets(true);
}
}
/// @brief Sets a connected Spektrum receiver into bind mode
void PX4RCCalibration::_spektrumBind(void)
{
Q_ASSERT(_mav);
QMessageBox bindTypeMsg(this);
bindTypeMsg.setWindowModality(Qt::ApplicationModal);
QPushButton* dsm2Mode = bindTypeMsg.addButton("DSM2", QMessageBox::AcceptRole);
QPushButton* dsmx7Mode = bindTypeMsg.addButton("DSMX (7 channels or less)", QMessageBox::AcceptRole);
QPushButton* dsmx8Mode = bindTypeMsg.addButton("DSMX (8 channels or more)", QMessageBox::AcceptRole);
bindTypeMsg.addButton(QMessageBox::Cancel);
bindTypeMsg.setWindowTitle(tr("Spektrum Bind"));
bindTypeMsg.setText(tr("Place Spektrum satellite receiver in bind mode. Select which mode below."));
if (bindTypeMsg.exec() != QMessageBox::Cancel) {
if (bindTypeMsg.clickedButton() == dsm2Mode) {
bindType = 0;
} else if (bindTypeMsg.clickedButton() == dsmx7Mode) {
bindType = 1;
} else if (bindTypeMsg.clickedButton() == dsmx8Mode) {
bindType = 2;
} else {
Q_ASSERT(false);
}
_mav->pairRX(0, bindType);
}
}
void PX4RCCalibration::_setActiveUAS(UASInterface* active)
{
// Disconnect old signals
if (_mav) {
disconnect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float)));
disconnect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate()));
_paramMgr = NULL;
}
_mav = active;
if (_mav) {
// Connect new signals
bool fSucceeded;
Q_UNUSED(fSucceeded);
fSucceeded = connect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float)));
Q_ASSERT(fSucceeded);
_paramMgr = _mav->getParamManager();
Q_ASSERT(_paramMgr);
fSucceeded = connect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate()));
Q_ASSERT(fSucceeded);
}
setEnabled(_mav ? true : false);
}
/// @brief Validates the current settings against the calibration rules resetting values as necessary.
void PX4RCCalibration::_validateCalibration(void)
{
for (int chan = 0; chan<_chanMax; chan++) {
struct ChannelInfo* info = &_rgChannelInfo[chan];
if (chan < _chanCount) {
// Validate Min/Max values. Although the channel appears as available we still may
// not have good min/max/trim values for it. Set to defaults if needed.
if (info->rcMin > _rcCalPWMValidMinValue || info->rcMax < _rcCalPWMValidMaxValue) {
//qDebug() << "_validateCalibration resetting channel" << chan;
info->rcMin = _rcCalPWMDefaultMinValue;
info->rcMax = _rcCalPWMDefaultMaxValue;
info->rcTrim = info->rcMin + ((info->rcMax - info->rcMin) / 2);
} else {
switch (_rgChannelInfo[chan].function) {
case rcCalFunctionThrottle:
case rcCalFunctionYaw:
case rcCalFunctionRoll:
case rcCalFunctionPitch:
break;
default:
// Non-attitude control channels have calculated trim
info->rcTrim = info->rcMin + ((info->rcMax - info->rcMin) / 2);
break;
}
}
} else {
// Unavailable channels are set to defaults
//qDebug() << "_validateCalibration resetting unavailable channel" << chan;
info->rcMin = _rcCalPWMDefaultMinValue;
info->rcMax = _rcCalPWMDefaultMaxValue;
info->rcTrim = info->rcMin + ((info->rcMax - info->rcMin) / 2);
/// @brief Saves the rc calibration values to the board parameters.
/// @param trimsOnly true: write only trim values, false: write all calibration values
{
if (!_mav) return;
_mav->endRadioControlCalibration();
QGCUASParamManagerInterface* paramMgr = _mav->getParamManager();
Q_ASSERT(paramMgr);
QString minTpl("RC%1_MIN");
QString maxTpl("RC%1_MAX");
QString trimTpl("RC%1_TRIM");
QString revTpl("RC%1_REV");
// Note that the rc parameters are all float, so you must cast to float in order to get the right QVariant
for (int chan = 0; chan<_chanMax; chan++) {
struct ChannelInfo* info = &_rgChannelInfo[chan];
int oneBasedChannel = chan + 1;
paramMgr->setPendingParam(0, trimTpl.arg(oneBasedChannel), (float)info->rcTrim);
paramMgr->setPendingParam(0, minTpl.arg(oneBasedChannel), (float)info->rcMin);
paramMgr->setPendingParam(0, maxTpl.arg(oneBasedChannel), (float)info->rcMax);
paramMgr->setPendingParam(0, revTpl.arg(oneBasedChannel), info->reversed ? -1.0f : 1.0f);
// Write function mapping parameters
for (size_t i=0; i<rcCalFunctionMax; i++) {
int32_t paramChannel;
if (_rgFunctionChannelMapping[i] == _chanMax) {
// 0 signals no mapping
paramChannel = 0;
} else {
// Note that the channel value is 1-based
paramChannel = _rgFunctionChannelMapping[i] + 1;
paramMgr->setPendingParam(0, _rgFunctionInfo[i].parameterName, paramChannel);
}
//let the param mgr manage sending all the pending RC_foo updates and persisting after
paramMgr->sendPendingParameters(true, true);
}
void PX4RCCalibration::_updateView()
{
// Update the available channels
for (int chan=0; chan<_chanCount; chan++) {
RCValueWidget* valueWidget = _rgRCValueMonitorWidget[chan];
valueWidget->setVisible(true);
_rgRCValueMonitorLabel[chan]->setVisible(true);
//qDebug() << "Visible" << valueWidget->objectName() << chan;
struct ChannelInfo* info = &_rgChannelInfo[chan];
valueWidget->setValueAndMinMax(_rcRawValue[chan], info->rcMin, info->rcMax);
valueWidget->setTrim(info->rcTrim);
valueWidget->setReversed(info->reversed);
// Update attitude controls
for (int i=0; i<_attitudeControls; i++) {
struct AttitudeInfo* attitudeInfo = &_rgAttitudeControl[i];
if (_rgFunctionChannelMapping[attitudeInfo->function] != _chanMax) {
int channel = _rgFunctionChannelMapping[attitudeInfo->function];
struct ChannelInfo* info = &_rgChannelInfo[channel];
RCValueWidget* valueWidget = attitudeInfo->valueWidget;
attitudeInfo->valueWidget->setValueAndMinMax(_rcRawValue[channel], info->rcMin, info->rcMax);
valueWidget->setTrim(info->rcTrim);
valueWidget->setReversed(info->reversed);
// Hide non-available channels
for (int chan=_chanCount; chan<_chanMax; chan++) {
_rgRCValueMonitorWidget[chan]->setVisible(false);
_rgRCValueMonitorLabel[chan]->setVisible(false);
//qDebug() << "Off" << _rgRCValueMonitorWidget[chan]->objectName() << chan;
/// @brief Starts the calibration process
void PX4RCCalibration::_startCalibration(void)
{
Q_ASSERT(_chanCount >= _chanMinimum);
// Let the mav known we are starting calibration. This should turn off motors and so forth.
_ui->rcCalNext->setText(tr("Next"));
_ui->rcCalCancel->setEnabled(true);
/// @brief Cancels the calibration process, setting things back to initial state.
void PX4RCCalibration::_stopCalibration(void)
if (_mav) {
_mav->endRadioControlCalibration();
_setInternalCalibrationValuesFromParameters();
} else {
_resetInternalCalibrationValues();
_ui->rcCalSkip->setEnabled(false);
}
/// @brief Saves the current channel values, so that we can detect when the use moves an input.
void PX4RCCalibration::_rcCalSaveCurrentValues(void)
//qDebug() << "_rcCalSaveCurrentValues";
for (unsigned i = 0; i < _chanMax; i++) {
_rcValueSave[i] = _rcRawValue[i];
}
}
/// @brief Set up the Save state of calibration.
void PX4RCCalibration::_rcCalSave(void)
{
_rcCalState = rcCalStateSave;
_ui->rcCalStatus->setText(tr("The current calibration settings are now displayed for each channel on screen.\n\n"
"Click the Next button to upload calibration to board. Click Cancel if you don't want to save these values."));
_ui->rcCalNext->setEnabled(true);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);