Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*=====================================================================
PIXHAWK Micro Air Vehicle Flying Robotics Toolkit
(c) 2009 PIXHAWK PROJECT <http://pixhawk.ethz.ch>
This file is part of the PIXHAWK project
PIXHAWK is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PIXHAWK is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PIXHAWK. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/**
* @file
* @brief Brief Description
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#include <float.h>
#include <UASInfoWidget.h>
#include <UASManager.h>
#include <MG.h>
#include <QTimer>
#include <QDir>
#include <cstdlib>
#include <cmath>
#include <QDebug>
UASInfoWidget::UASInfoWidget(QWidget *parent, QString name) : QWidget(parent)
{
ui.setupUi(this);
this->name = name;
connect(UASManager::instance(), SIGNAL(activeUASSet(UASInterface*)), this, SLOT(setActiveUAS(UASInterface*)));
activeUAS = NULL;
//instruments = new QMap<QString, QProgressBar*>();
// Set default battery type
// setBattery(0, LIPOLY, 3);
startTime = MG::TIME::getGroundTimeNow();
// startVoltage = 0.0f;
// lastChargeLevel = 0.5f;
// lastRemainingTime = 1;
// Set default values
/** Set two voltage decimals and zero charge level decimals **/
this->voltageDecimals = 2;
this->loadDecimals = 2;
this->voltage = 0;
this->chargeLevel = 0;
this->load = 0;
updateTimer = new QTimer(this);
connect(updateTimer, SIGNAL(timeout()), this, SLOT(refresh()));
updateTimer->start(50);
}
UASInfoWidget::~UASInfoWidget()
{
}
void UASInfoWidget::addUAS(UASInterface* uas)
{
if (uas != NULL)
{
// connect(uas, SIGNAL(voltageChanged(int, double)), this, SLOT(setVoltage(int, double)));
connect(uas, SIGNAL(batteryChanged(UASInterface*,double,double,int)), this, SLOT(updateBattery(UASInterface*,double,double,int)));
connect(uas, SIGNAL(valueChanged(int,QString,double,quint64)), this, SLOT(valueChanged(int,QString,double,quint64)));
connect(uas, SIGNAL(actuatorChanged(UASInterface*,int,double)), this, SLOT(actuatorChanged(UASInterface*,int,double)));
connect(uas, SIGNAL(loadChanged(UASInterface*, double)), this, SLOT(updateCPULoad(UASInterface*,double)));
// Set this UAS as active if it is the first one
if (activeUAS == 0) activeUAS = uas;
}
}
void UASInfoWidget::setActiveUAS(UASInterface* uas)
{
activeUAS = uas;
}
void UASInfoWidget::addInstrument(QString key, double min, double max, double initial, QString unit)
{
}
void UASInfoWidget::valueChanged(int uasid, QString key, double value,quint64 time)
{
}
void UASInfoWidget::actuatorChanged(UASInterface* uas, int actId, double value)
{
if (activeUAS == uas)
{
switch (actId)
{
case 0:
ui.topRotorLabel->setText(QString::number(value*3300, 'f', 2));
ui.topRotorBar->setValue(value * 100);
break;
case 1:
ui.botRotorLabel->setText(QString::number(value*3300, 'f', 2));
ui.botRotorBar->setValue(value * 100);
break;
case 2:
ui.leftServoLabel->setText(QString::number(value*57.2957795f, 'f', 2));
ui.leftServoBar->setValue((value * 50.0f) + 50);
break;
case 3:
ui.rightServoLabel->setText(QString::number(value*57.2957795f, 'f', 2));
ui.rightServoBar->setValue((value * 50.0f) + 50);
break;
}
}
}
void UASInfoWidget::updateBattery(UASInterface* uas, double voltage, double percent, int seconds)
{
setVoltage(uas, voltage);
setChargeLevel(uas, percent);
setTimeRemaining(uas, seconds);
}
void UASInfoWidget::updateCPULoad(UASInterface* uas, double load)
{
if (activeUAS == uas)
{
this->load = load;
}
}
//void UASInfoWidget::setBattery(int uasid, BatteryType type, int cells)
//{
// this->batteryType = type;
// this->cells = cells;
// switch (batteryType)
// {
// case NICD:
// break;
// case NIMH:
// break;
// case LIION:
// break;
// case LIPOLY:
// fullVoltage = this->cells * 4.18;
// emptyVoltage = this->cells * 3.4;
// break;
// case LIFE:
// break;
// case AGZN:
// break;
// }
//}
//double UASInfoWidget::calculateTimeRemaining() {
// quint64 dt = MG::TIME::getGroundTimeNow() - startTime;
// double seconds = dt / 1000.0f;
// double voltDifference = startVoltage - currentVoltage;
// if (voltDifference <= 0) voltDifference = 0.00000000001f;
// double dischargePerSecond = voltDifference / seconds;
// double remaining = (currentVoltage - emptyVoltage) / dischargePerSecond;
// // Can never be below 0
// if (remaining <= 0) remaining = 0.0000000000001f;
// return remaining;
//}
void UASInfoWidget::setVoltage(UASInterface* uas, double voltage)
{
this->voltage = voltage;
}
//void UASInfoWidget::setVoltage(int uasid, double voltage)
//{
// // Read and update data
// currentVoltage = voltage;
// if (startVoltage == 0) startVoltage = currentVoltage;
// // This is a low pass filter to get smoother results: (0.8 * lastChargeLevel) + (0.2 * chargeLevel)
// double chargeLevel = (currentVoltage - emptyVoltage)/(fullVoltage - emptyVoltage);
// lastChargeLevel = (0.6 * lastChargeLevel) + (0.4 * chargeLevel);
//
// lastRemainingTime = calculateTimeRemaining();
//
// ui.voltageLabel->setText(QString::number(currentVoltage, 'f', voltageDecimals));
// setChargeLevel(0, lastChargeLevel * 100);
// setTimeRemaining(0, lastRemainingTime);
//}
void UASInfoWidget::setChargeLevel(UASInterface* uas, double chargeLevel)
{
if (activeUAS == uas)
{
this->chargeLevel = chargeLevel;
}
}
void UASInfoWidget::setTimeRemaining(UASInterface* uas, double seconds)
{
if (activeUAS == uas)
{
this->timeRemaining = seconds;
}
}
void UASInfoWidget::refresh()
{
ui.voltageLabel->setText(QString::number(this->voltage, 'f', voltageDecimals));
ui.batteryBar->setValue(static_cast<int>(this->chargeLevel));
ui.loadLabel->setText(QString::number(this->load, 'f', loadDecimals));
ui.loadBar->setValue(static_cast<int>(this->load));
// if(this->timeRemaining > 1 && this->timeRemaining < MG::MAX_FLIGHT_TIME)
// {
// // Filter output to get a higher stability
// static int filterTime = static_cast<int>(this->timeRemaining);
// //filterTime = 0.8 * filterTime + 0.2 * static_cast<int>(this->timeRemaining);
//
// int hours = filterTime % (60 * 60);
// int min = (filterTime - hours * 60) % 60;
// int sec = (filterTime - hours * 60 - min * 60);
// QString timeText;
// timeText = timeText.sprintf("%02d:%02d:%02d", hours, min, sec);
// ui.voltageTimeEstimateLabel->setText(timeText);
// } else {
// ui.voltageTimeEstimateLabel->setText(tr("Calculating"));
// }
}