Skip to content
Eigen_Colamd.h 60.1 KiB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// This file is modified from the colamd/symamd library. The copyright is below

//   The authors of the code itself are Stefan I. Larimore and Timothy A.
//   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was
//   developed in collaboration with John Gilbert, Xerox PARC, and Esmond
//   Ng, Oak Ridge National Laboratory.
// 
//     Date:
// 
//   September 8, 2003.  Version 2.3.
// 
//     Acknowledgements:
// 
//   This work was supported by the National Science Foundation, under
//   grants DMS-9504974 and DMS-9803599.
// 
//     Notice:
// 
//   Copyright (c) 1998-2003 by the University of Florida.
//   All Rights Reserved.
// 
//   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
// 
//   Permission is hereby granted to use, copy, modify, and/or distribute
//   this program, provided that the Copyright, this License, and the
//   Availability of the original version is retained on all copies and made
//   accessible to the end-user of any code or package that includes COLAMD
//   or any modified version of COLAMD. 
// 
//     Availability:
// 
//   The colamd/symamd library is available at
// 
//       http://www.cise.ufl.edu/research/sparse/colamd/

//   This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
//   file.  It is required by the colamd.c, colamdmex.c, and symamdmex.c
//   files, and by any C code that calls the routines whose prototypes are
//   listed below, or that uses the colamd/symamd definitions listed below.
  
#ifndef EIGEN_COLAMD_H
#define EIGEN_COLAMD_H

namespace internal {
/* Ensure that debugging is turned off: */
#ifndef COLAMD_NDEBUG
#define COLAMD_NDEBUG
#endif /* NDEBUG */
/* ========================================================================== */
/* === Knob and statistics definitions ====================================== */
/* ========================================================================== */

/* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */
#define COLAMD_KNOBS 20

/* number of output statistics.  Only stats [0..6] are currently used. */
#define COLAMD_STATS 20 

/* knobs [0] and stats [0]: dense row knob and output statistic. */
#define COLAMD_DENSE_ROW 0

/* knobs [1] and stats [1]: dense column knob and output statistic. */
#define COLAMD_DENSE_COL 1

/* stats [2]: memory defragmentation count output statistic */
#define COLAMD_DEFRAG_COUNT 2

/* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */
#define COLAMD_STATUS 3

/* stats [4..6]: error info, or info on jumbled columns */ 
#define COLAMD_INFO1 4
#define COLAMD_INFO2 5
#define COLAMD_INFO3 6

/* error codes returned in stats [3]: */
#define COLAMD_OK       (0)
#define COLAMD_OK_BUT_JUMBLED     (1)
#define COLAMD_ERROR_A_not_present    (-1)
#define COLAMD_ERROR_p_not_present    (-2)
#define COLAMD_ERROR_nrow_negative    (-3)
#define COLAMD_ERROR_ncol_negative    (-4)
#define COLAMD_ERROR_nnz_negative   (-5)
#define COLAMD_ERROR_p0_nonzero     (-6)
#define COLAMD_ERROR_A_too_small    (-7)
#define COLAMD_ERROR_col_length_negative  (-8)
#define COLAMD_ERROR_row_index_out_of_bounds  (-9)
#define COLAMD_ERROR_out_of_memory    (-10)
#define COLAMD_ERROR_internal_error   (-999)

/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */

#define COLAMD_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define COLAMD_MIN(a,b) (((a) < (b)) ? (a) : (b))

#define ONES_COMPLEMENT(r) (-(r)-1)

/* -------------------------------------------------------------------------- */

#define COLAMD_EMPTY (-1)

/* Row and column status */
#define ALIVE (0)
#define DEAD  (-1)

/* Column status */
#define DEAD_PRINCIPAL    (-1)
#define DEAD_NON_PRINCIPAL  (-2)

/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r)      ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark)  (row_mark < ALIVE)
#define ROW_IS_ALIVE(r)     (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c)      (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c)     (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c)  (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r)     { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c)   { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }

/* ========================================================================== */
/* === Colamd reporting mechanism =========================================== */
/* ========================================================================== */

// == Row and Column structures ==
template <typename Index>
struct colamd_col
{
  Index start ;   /* index for A of first row in this column, or DEAD */
  /* if column is dead */
  Index length ;  /* number of rows in this column */
  union
  {
    Index thickness ; /* number of original columns represented by this */
    /* col, if the column is alive */
    Index parent ;  /* parent in parent tree super-column structure, if */
    /* the column is dead */
  } shared1 ;
  union
  {
    Index score ; /* the score used to maintain heap, if col is alive */
    Index order ; /* pivot ordering of this column, if col is dead */
  } shared2 ;
  union
  {
    Index headhash ;  /* head of a hash bucket, if col is at the head of */
    /* a degree list */
    Index hash ;  /* hash value, if col is not in a degree list */
    Index prev ;  /* previous column in degree list, if col is in a */
    /* degree list (but not at the head of a degree list) */
  } shared3 ;
  union
  {
    Index degree_next ; /* next column, if col is in a degree list */
    Index hash_next ;   /* next column, if col is in a hash list */
  } shared4 ;
  
};
 
template <typename Index>
struct Colamd_Row
{
  Index start ;   /* index for A of first col in this row */
  Index length ;  /* number of principal columns in this row */
  union
  {
    Index degree ;  /* number of principal & non-principal columns in row */
    Index p ;   /* used as a row pointer in init_rows_cols () */
  } shared1 ;
  union
  {
    Index mark ;  /* for computing set differences and marking dead rows*/
    Index first_column ;/* first column in row (used in garbage collection) */
  } shared2 ;
  
};
 
/* ========================================================================== */
/* === Colamd recommended memory size ======================================= */
/* ========================================================================== */
 
/*
  The recommended length Alen of the array A passed to colamd is given by
  the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any
  argument is negative.  2*nnz space is required for the row and column
  indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
  required for the Col and Row arrays, respectively, which are internal to
  colamd.  An additional n_col space is the minimal amount of "elbow room",
  and nnz/5 more space is recommended for run time efficiency.
  
  This macro is not needed when using symamd.
  
  Explicit typecast to Index added Sept. 23, 2002, COLAMD version 2.2, to avoid
  gcc -pedantic warning messages.
*/
template <typename Index>
inline Index colamd_c(Index n_col) 
{ return Index( ((n_col) + 1) * sizeof (colamd_col<Index>) / sizeof (Index) ) ; }

template <typename Index>
inline Index  colamd_r(Index n_row)
{ return Index(((n_row) + 1) * sizeof (Colamd_Row<Index>) / sizeof (Index)); }

// Prototypes of non-user callable routines
template <typename Index>
static Index init_rows_cols (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> col [], Index A [], Index p [], Index stats[COLAMD_STATS] ); 

template <typename Index>
static void init_scoring (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], double knobs[COLAMD_KNOBS], Index *p_n_row2, Index *p_n_col2, Index *p_max_deg);

template <typename Index>
static Index find_ordering (Index n_row, Index n_col, Index Alen, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index head [], Index n_col2, Index max_deg, Index pfree);

template <typename Index>
static void order_children (Index n_col, colamd_col<Index> Col [], Index p []);

template <typename Index>
static void detect_super_cols (colamd_col<Index> Col [], Index A [], Index head [], Index row_start, Index row_length ) ;

template <typename Index>
static Index garbage_collection (Index n_row, Index n_col, Colamd_Row<Index> Row [], colamd_col<Index> Col [], Index A [], Index *pfree) ;

template <typename Index>
static inline  Index clear_mark (Index n_row, Colamd_Row<Index> Row [] ) ;

/* === No debugging ========================================================= */

#define COLAMD_DEBUG0(params) ;
#define COLAMD_DEBUG1(params) ;
#define COLAMD_DEBUG2(params) ;
#define COLAMD_DEBUG3(params) ;
#define COLAMD_DEBUG4(params) ;

#define COLAMD_ASSERT(expression) ((void) 0)


/**
 * \brief Returns the recommended value of Alen 
 * 
 * Returns recommended value of Alen for use by colamd.  
 * Returns -1 if any input argument is negative.  
 * The use of this routine or macro is optional.  
 * Note that the macro uses its arguments   more than once, 
 * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.  
 * 
 * \param nnz nonzeros in A
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \return recommended value of Alen for use by colamd
 */
template <typename Index>
inline Index colamd_recommended ( Index nnz, Index n_row, Index n_col)
{
  if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
    return (-1);
  else
    return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); 
}

/**
 * \brief set default parameters  The use of this routine is optional.
 * 
 * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
 * entries are removed prior to ordering.  Columns with more than
 * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
 * ordering, and placed last in the output column ordering. 
 *
 * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
 * respectively, in colamd.h.  Default values of these two knobs
 * are both 0.5.  Currently, only knobs [0] and knobs [1] are
 * used, but future versions may use more knobs.  If so, they will
 * be properly set to their defaults by the future version of
 * colamd_set_defaults, so that the code that calls colamd will
 * not need to change, assuming that you either use
 * colamd_set_defaults, or pass a (double *) NULL pointer as the
 * knobs array to colamd or symamd.
 * 
 * \param knobs parameter settings for colamd
 */

static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
{
  /* === Local variables ================================================== */
  
  int i ;

  if (!knobs)
  {
    return ;      /* no knobs to initialize */
  }
  for (i = 0 ; i < COLAMD_KNOBS ; i++)
  {
    knobs [i] = 0 ;
  }
  knobs [COLAMD_DENSE_ROW] = 0.5 ;  /* ignore rows over 50% dense */
  knobs [COLAMD_DENSE_COL] = 0.5 ;  /* ignore columns over 50% dense */
}

/** 
 * \brief  Computes a column ordering using the column approximate minimum degree ordering
 * 
 * Computes a column ordering (Q) of A such that P(AQ)=LU or
 * (AQ)'AQ=LL' have less fill-in and require fewer floating point
 * operations than factorizing the unpermuted matrix A or A'A,
 * respectively.
 * 
 * 
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \param Alen, size of the array A
 * \param A row indices of the matrix, of size ALen
 * \param p column pointers of A, of size n_col+1
 * \param knobs parameter settings for colamd
 * \param stats colamd output statistics and error codes
 */
template <typename Index>
static bool colamd(Index n_row, Index n_col, Index Alen, Index *A, Index *p, double knobs[COLAMD_KNOBS], Index stats[COLAMD_STATS])
{
  /* === Local variables ================================================== */
  
  Index i ;     /* loop index */
  Index nnz ;     /* nonzeros in A */
  Index Row_size ;    /* size of Row [], in integers */
  Index Col_size ;    /* size of Col [], in integers */
  Index need ;      /* minimum required length of A */
  Colamd_Row<Index> *Row ;   /* pointer into A of Row [0..n_row] array */
  colamd_col<Index> *Col ;   /* pointer into A of Col [0..n_col] array */
  Index n_col2 ;    /* number of non-dense, non-empty columns */
  Index n_row2 ;    /* number of non-dense, non-empty rows */
  Index ngarbage ;    /* number of garbage collections performed */
  Index max_deg ;   /* maximum row degree */
  double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
  
  
  /* === Check the input arguments ======================================== */
  
  if (!stats)
  {
    COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
    return (false) ;
  }
  for (i = 0 ; i < COLAMD_STATS ; i++)
  {
    stats [i] = 0 ;
  }
  stats [COLAMD_STATUS] = COLAMD_OK ;
  stats [COLAMD_INFO1] = -1 ;
  stats [COLAMD_INFO2] = -1 ;
  
  if (!A)   /* A is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
    COLAMD_DEBUG0 (("colamd: A not present\n")) ;
    return (false) ;
  }
  
  if (!p)   /* p is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
    COLAMD_DEBUG0 (("colamd: p not present\n")) ;
    return (false) ;
  }
  
  if (n_row < 0)  /* n_row must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
    stats [COLAMD_INFO1] = n_row ;
    COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
    return (false) ;
  }
  
  if (n_col < 0)  /* n_col must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
    stats [COLAMD_INFO1] = n_col ;
    COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
    return (false) ;
  }
  
  nnz = p [n_col] ;
  if (nnz < 0)  /* nnz must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
    stats [COLAMD_INFO1] = nnz ;
    COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
    return (false) ;
  }
  
  if (p [0] != 0)
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
    stats [COLAMD_INFO1] = p [0] ;
    COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
    return (false) ;
  }
  
  /* === If no knobs, set default knobs =================================== */
  
  if (!knobs)
  {
    colamd_set_defaults (default_knobs) ;
    knobs = default_knobs ;
  }
  
  /* === Allocate the Row and Col arrays from array A ===================== */
  
  Col_size = colamd_c (n_col) ;
  Row_size = colamd_r (n_row) ;
  need = 2*nnz + n_col + Col_size + Row_size ;
  
  if (need > Alen)
  {
    /* not enough space in array A to perform the ordering */
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
    stats [COLAMD_INFO1] = need ;
    stats [COLAMD_INFO2] = Alen ;
    COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
    return (false) ;
  }
  
  Alen -= Col_size + Row_size ;
  Col = (colamd_col<Index> *) &A [Alen] ;
  Row = (Colamd_Row<Index> *) &A [Alen + Col_size] ;

  /* === Construct the row and column data structures ===================== */
  
  if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
  {
    /* input matrix is invalid */
    COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
    return (false) ;
  }
  
  /* === Initialize scores, kill dense rows/columns ======================= */

  Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
		&n_row2, &n_col2, &max_deg) ;
  
  /* === Order the supercolumns =========================================== */
  
  ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
			    n_col2, max_deg, 2*nnz) ;
  
  /* === Order the non-principal columns ================================== */
  
  Eigen::internal::order_children (n_col, Col, p) ;
  
  /* === Return statistics in stats ======================================= */
  
  stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
  stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
  stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
  COLAMD_DEBUG0 (("colamd: done.\n")) ; 
  return (true) ;
}

/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */

/* There are no user-callable routines beyond this point in the file */


/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */

/*
  Takes the column form of the matrix in A and creates the row form of the
  matrix.  Also, row and column attributes are stored in the Col and Row
  structs.  If the columns are un-sorted or contain duplicate row indices,
  this routine will also sort and remove duplicate row indices from the
  column form of the matrix.  Returns false if the matrix is invalid,
  true otherwise.  Not user-callable.
*/
template <typename Index>
static Index init_rows_cols  /* returns true if OK, or false otherwise */
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* row indices of A, of size Alen */
    Index p [],     /* pointers to columns in A, of size n_col+1 */
    Index stats [COLAMD_STATS]  /* colamd statistics */ 
    )
{
  /* === Local variables ================================================== */

  Index col ;     /* a column index */
  Index row ;     /* a row index */
  Index *cp ;     /* a column pointer */
  Index *cp_end ;   /* a pointer to the end of a column */
  Index *rp ;     /* a row pointer */
  Index *rp_end ;   /* a pointer to the end of a row */
  Index last_row ;    /* previous row */

  /* === Initialize columns, and check column pointers ==================== */

  for (col = 0 ; col < n_col ; col++)
  {
    Col [col].start = p [col] ;
    Col [col].length = p [col+1] - p [col] ;

    if (Col [col].length < 0)
    {
      /* column pointers must be non-decreasing */
      stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
      stats [COLAMD_INFO1] = col ;
      stats [COLAMD_INFO2] = Col [col].length ;
      COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
      return (false) ;
    }

    Col [col].shared1.thickness = 1 ;
    Col [col].shared2.score = 0 ;
    Col [col].shared3.prev = COLAMD_EMPTY ;
    Col [col].shared4.degree_next = COLAMD_EMPTY ;
  }

  /* p [0..n_col] no longer needed, used as "head" in subsequent routines */

  /* === Scan columns, compute row degrees, and check row indices ========= */

  stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].length = 0 ;
    Row [row].shared2.mark = -1 ;
  }

  for (col = 0 ; col < n_col ; col++)
  {
    last_row = -1 ;

    cp = &A [p [col]] ;
    cp_end = &A [p [col+1]] ;

    while (cp < cp_end)
    {
      row = *cp++ ;

      /* make sure row indices within range */
      if (row < 0 || row >= n_row)
      {
	stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	stats [COLAMD_INFO3] = n_row ;
	COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
	return (false) ;
      }

      if (row <= last_row || Row [row].shared2.mark == col)
      {
	/* row index are unsorted or repeated (or both), thus col */
	/* is jumbled.  This is a notice, not an error condition. */
	stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	(stats [COLAMD_INFO3]) ++ ;
	COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
      }

      if (Row [row].shared2.mark != col)
      {
	Row [row].length++ ;
      }
      else
      {
	/* this is a repeated entry in the column, */
	/* it will be removed */
	Col [col].length-- ;
      }

      /* mark the row as having been seen in this column */
      Row [row].shared2.mark = col ;

      last_row = row ;
    }
  }

  /* === Compute row pointers ============================================= */

  /* row form of the matrix starts directly after the column */
  /* form of matrix in A */
  Row [0].start = p [n_col] ;
  Row [0].shared1.p = Row [0].start ;
  Row [0].shared2.mark = -1 ;
  for (row = 1 ; row < n_row ; row++)
  {
    Row [row].start = Row [row-1].start + Row [row-1].length ;
    Row [row].shared1.p = Row [row].start ;
    Row [row].shared2.mark = -1 ;
  }

  /* === Create row form ================================================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    /* if cols jumbled, watch for repeated row indices */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	row = *cp++ ;
	if (Row [row].shared2.mark != col)
	{
	  A [(Row [row].shared1.p)++] = col ;
	  Row [row].shared2.mark = col ;
	}
      }
    }
  }
  else
  {
    /* if cols not jumbled, we don't need the mark (this is faster) */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	A [(Row [*cp++].shared1.p)++] = col ;
      }
    }
  }

  /* === Clear the row marks and set row degrees ========================== */

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].shared2.mark = 0 ;
    Row [row].shared1.degree = Row [row].length ;
  }

  /* === See if we need to re-create columns ============================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;


    /* === Compute col pointers ========================================= */

    /* col form of the matrix starts at A [0]. */
    /* Note, we may have a gap between the col form and the row */
    /* form if there were duplicate entries, if so, it will be */
    /* removed upon the first garbage collection */
    Col [0].start = 0 ;
    p [0] = Col [0].start ;
    for (col = 1 ; col < n_col ; col++)
    {
      /* note that the lengths here are for pruned columns, i.e. */
      /* no duplicate row indices will exist for these columns */
      Col [col].start = Col [col-1].start + Col [col-1].length ;
      p [col] = Col [col].start ;
    }

    /* === Re-create col form =========================================== */

    for (row = 0 ; row < n_row ; row++)
    {
      rp = &A [Row [row].start] ;
      rp_end = rp + Row [row].length ;
      while (rp < rp_end)
      {
	A [(p [*rp++])++] = row ;
      }
    }
  }

  /* === Done.  Matrix is not (or no longer) jumbled ====================== */

  return (true) ;
}


/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */

/*
  Kills dense or empty columns and rows, calculates an initial score for
  each column, and places all columns in the degree lists.  Not user-callable.
*/
template <typename Index>
static void init_scoring
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* column form and row form of A */
    Index head [],    /* of size n_col+1 */
    double knobs [COLAMD_KNOBS],/* parameters */
    Index *p_n_row2,    /* number of non-dense, non-empty rows */
    Index *p_n_col2,    /* number of non-dense, non-empty columns */
    Index *p_max_deg    /* maximum row degree */
    )
{
  /* === Local variables ================================================== */

  Index c ;     /* a column index */
  Index r, row ;    /* a row index */
  Index *cp ;     /* a column pointer */
  Index deg ;     /* degree of a row or column */
  Index *cp_end ;   /* a pointer to the end of a column */
  Index *new_cp ;   /* new column pointer */
  Index col_length ;    /* length of pruned column */
  Index score ;     /* current column score */
  Index n_col2 ;    /* number of non-dense, non-empty columns */
  Index n_row2 ;    /* number of non-dense, non-empty rows */
  Index dense_row_count ; /* remove rows with more entries than this */
  Index dense_col_count ; /* remove cols with more entries than this */
  Index min_score ;   /* smallest column score */
  Index max_deg ;   /* maximum row degree */
  Index next_col ;    /* Used to add to degree list.*/


  /* === Extract knobs ==================================================== */

  dense_row_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
  dense_col_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
  COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
  max_deg = 0 ;
  n_col2 = n_col ;
  n_row2 = n_row ;

  /* === Kill empty columns =============================================== */

  /* Put the empty columns at the end in their natural order, so that LU */
  /* factorization can proceed as far as possible. */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    deg = Col [c].length ;
    if (deg == 0)
    {
      /* this is a empty column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense columns =============================================== */

  /* Put the dense columns at the end, in their natural order */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip any dead columns */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    deg = Col [c].length ;
    if (deg > dense_col_count)
    {
      /* this is a dense column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      /* decrement the row degrees */
      cp = &A [Col [c].start] ;
      cp_end = cp + Col [c].length ;
      while (cp < cp_end)
      {
	Row [*cp++].shared1.degree-- ;
      }
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense and empty rows ======================================== */

  for (r = 0 ; r < n_row ; r++)
  {
    deg = Row [r].shared1.degree ;
    COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
    if (deg > dense_row_count || deg == 0)
    {
      /* kill a dense or empty row */
      KILL_ROW (r) ;
      --n_row2 ;
    }
    else
    {
      /* keep track of max degree of remaining rows */
      max_deg = COLAMD_MAX (max_deg, deg) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;

  /* === Compute initial column scores ==================================== */

  /* At this point the row degrees are accurate.  They reflect the number */
  /* of "live" (non-dense) columns in each row.  No empty rows exist. */
  /* Some "live" columns may contain only dead rows, however.  These are */
  /* pruned in the code below. */

  /* now find the initial matlab score for each column */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip dead column */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    score = 0 ;
    cp = &A [Col [c].start] ;
    new_cp = cp ;
    cp_end = cp + Col [c].length ;
    while (cp < cp_end)
    {
      /* get a row */
      row = *cp++ ;
      /* skip if dead */
      if (ROW_IS_DEAD (row))
      {
	continue ;
      }
      /* compact the column */
      *new_cp++ = row ;
      /* add row's external degree */
      score += Row [row].shared1.degree - 1 ;
      /* guard against integer overflow */
      score = COLAMD_MIN (score, n_col) ;
    }
    /* determine pruned column length */
    col_length = (Index) (new_cp - &A [Col [c].start]) ;
    if (col_length == 0)
    {
      /* a newly-made null column (all rows in this col are "dense" */
      /* and have already been killed) */
      COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
    else
    {
      /* set column length and set score */
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      Col [c].length = col_length ;
      Col [c].shared2.score = score ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
		  n_col-n_col2)) ;

  /* At this point, all empty rows and columns are dead.  All live columns */
  /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
  /* yet).  Rows may contain dead columns, but all live rows contain at */
  /* least one live column. */

  /* === Initialize degree lists ========================================== */


  /* clear the hash buckets */
  for (c = 0 ; c <= n_col ; c++)
  {
    head [c] = COLAMD_EMPTY ;
  }
  min_score = n_col ;
  /* place in reverse order, so low column indices are at the front */
  /* of the lists.  This is to encourage natural tie-breaking */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* only add principal columns to degree lists */
    if (COL_IS_ALIVE (c))
    {
      COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
		      c, Col [c].shared2.score, min_score, n_col)) ;

      /* === Add columns score to DList =============================== */

      score = Col [c].shared2.score ;

      COLAMD_ASSERT (min_score >= 0) ;
      COLAMD_ASSERT (min_score <= n_col) ;
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;

      /* now add this column to dList at proper score location */
      next_col = head [score] ;
      Col [c].shared3.prev = COLAMD_EMPTY ;
      Col [c].shared4.degree_next = next_col ;

      /* if there already was a column with the same score, set its */
      /* previous pointer to this new column */
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = c ;
      }
      head [score] = c ;

      /* see if this score is less than current min */
      min_score = COLAMD_MIN (min_score, score) ;


    }
  }


  /* === Return number of remaining columns, and max row degree =========== */

  *p_n_col2 = n_col2 ;
  *p_n_row2 = n_row2 ;
  *p_max_deg = max_deg ;
}


/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */

/*
  Order the principal columns of the supercolumn form of the matrix
  (no supercolumns on input).  Uses a minimum approximate column minimum
  degree ordering method.  Not user-callable.
*/
template <typename Index>
static Index find_ordering /* return the number of garbage collections */
  (
    /* === Parameters ======================================================= */

    Index n_row,      /* number of rows of A */
    Index n_col,      /* number of columns of A */
    Index Alen,     /* size of A, 2*nnz + n_col or larger */
    Colamd_Row<Index> Row [],    /* of size n_row+1 */
    colamd_col<Index> Col [],    /* of size n_col+1 */
    Index A [],     /* column form and row form of A */
    Index head [],    /* of size n_col+1 */
    Index n_col2,     /* Remaining columns to order */
    Index max_deg,    /* Maximum row degree */
    Index pfree     /* index of first free slot (2*nnz on entry) */
    )
{
  /* === Local variables ================================================== */

  Index k ;     /* current pivot ordering step */
  Index pivot_col ;   /* current pivot column */
  Index *cp ;     /* a column pointer */
  Index *rp ;     /* a row pointer */
  Index pivot_row ;   /* current pivot row */
  Index *new_cp ;   /* modified column pointer */
  Index *new_rp ;   /* modified row pointer */
  Index pivot_row_start ; /* pointer to start of pivot row */
  Index pivot_row_degree ;  /* number of columns in pivot row */
  Index pivot_row_length ;  /* number of supercolumns in pivot row */
  Index pivot_col_score ; /* score of pivot column */
  Index needed_memory ;   /* free space needed for pivot row */
  Index *cp_end ;   /* pointer to the end of a column */
  Index *rp_end ;   /* pointer to the end of a row */
  Index row ;     /* a row index */
  Index col ;     /* a column index */
  Index max_score ;   /* maximum possible score */
  Index cur_score ;   /* score of current column */
  unsigned int hash ;   /* hash value for supernode detection */
  Index head_column ;   /* head of hash bucket */
  Index first_col ;   /* first column in hash bucket */
  Index tag_mark ;    /* marker value for mark array */
  Index row_mark ;    /* Row [row].shared2.mark */
  Index set_difference ;  /* set difference size of row with pivot row */
  Index min_score ;   /* smallest column score */
  Index col_thickness ;   /* "thickness" (no. of columns in a supercol) */
  Index max_mark ;    /* maximum value of tag_mark */
  Index pivot_col_thickness ; /* number of columns represented by pivot col */
  Index prev_col ;    /* Used by Dlist operations. */
  Index next_col ;    /* Used by Dlist operations. */
  Index ngarbage ;    /* number of garbage collections performed */


  /* === Initialization and clear mark ==================================== */

  max_mark = INT_MAX - n_col ;  /* INT_MAX defined in <limits.h> */
  tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
  min_score = 0 ;
  ngarbage = 0 ;
  COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;