Math.js 14.6 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Math.js
 * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
 * JavaScript.
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

/**
 * @namespace GeographicLib
 * @description The parent namespace for the following modules:
 * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
 *   engine for solving geodesic problems via the
 *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
 * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
 *   computes points along a single geodesic line via the
 *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
 *   class.
 * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
 *   computes the area of a geodesic polygon via the
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
 *   class.
 * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
 *   and encoding of angles in degree, minutes, and seconds, via static
 *   functions in this module.
 * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
 *   constants specifying the version numbers and the parameters for the WGS84
 *   ellipsoid.
 *
 * The following modules are used internally by the package:
 * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
 *   mathematical functions.
 * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
 *   interally used by
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
 *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
 *   for summing the contributions to the area of a polygon.
 */
"use strict";
var GeographicLib = {};
GeographicLib.Constants = {};
GeographicLib.Math = {};
GeographicLib.Accumulator = {};

(function(
  /**
   * @exports GeographicLib/Constants
   * @description Define constants defining the version and WGS84 parameters.
   */
  c) {

  /**
   * @constant
   * @summary WGS84 parameters.
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   */
  c.WGS84 = { a: 6378137, f: 1/298.257223563 };
  /**
   * @constant
   * @summary an array of version numbers.
   * @property {number} major the major version number.
   * @property {number} minor the minor version number.
   * @property {number} patch the patch number.
   */
  c.version = { major: 1, minor: 50, patch: 0 };
  /**
   * @constant
   * @summary version string
   */
  c.version_string = "1.50";
})(GeographicLib.Constants);

(function(
  /**
   * @exports GeographicLib/Math
   * @description Some useful mathematical constants and functions (mainly for
   *   internal use).
   */
  m) {

  /**
   * @summary The number of digits of precision in floating-point numbers.
   * @constant {number}
   */
  m.digits = 53;
  /**
   * @summary The machine epsilon.
   * @constant {number}
   */
  m.epsilon = Math.pow(0.5, m.digits - 1);
  /**
   * @summary The factor to convert degrees to radians.
   * @constant {number}
   */
  m.degree = Math.PI/180;

  /**
   * @summary Square a number.
   * @param {number} x the number.
   * @returns {number} the square.
   */
  m.sq = function(x) { return x * x; };

  /**
   * @summary The hypotenuse function.
   * @param {number} x the first side.
   * @param {number} y the second side.
   * @returns {number} the hypotenuse.
   */
  m.hypot = Math.hypot || function(x, y) {
    var a, b;
    x = Math.abs(x);
    y = Math.abs(y);
    a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
    return a * Math.sqrt(1 + b * b);
  };

  /**
   * @summary Cube root function.
   * @param {number} x the argument.
   * @returns {number} the real cube root.
   */
  m.cbrt = Math.cbrt || function(x) {
    var y = Math.pow(Math.abs(x), 1/3);
    return x > 0 ? y : (x < 0 ? -y : x);
  };

  /**
   * @summary The log1p function.
   * @param {number} x the argument.
   * @returns {number} log(1 + x).
   */
  m.log1p = Math.log1p || function(x) {
    var y = 1 + x,
        z = y - 1;
    // Here's the explanation for this magic: y = 1 + z, exactly, and z
    // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
    // a good approximation to the true log(1 + x)/x.  The multiplication x *
    // (log(y)/z) introduces little additional error.
    return z === 0 ? x : x * Math.log(y) / z;
  };

  /**
   * @summary Inverse hyperbolic tangent.
   * @param {number} x the argument.
   * @returns {number} tanh<sup>&minus;1</sup> x.
   */
  m.atanh = Math.atanh || function(x) {
    var y = Math.abs(x);          // Enforce odd parity
    y = m.log1p(2 * y/(1 - y))/2;
    return x > 0 ? y : (x < 0 ? -y : x);
  };

  /**
   * @summary Copy the sign.
   * @param {number} x gives the magitude of the result.
   * @param {number} y gives the sign of the result.
   * @returns {number} value with the magnitude of x and with the sign of y.
   */
  m.copysign = function(x, y) {
    return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
  };

  /**
   * @summary An error-free sum.
   * @param {number} u
   * @param {number} v
   * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
   *   round(u + v)
   */
  m.sum = function(u, v) {
    var s = u + v,
        up = s - v,
        vpp = s - up,
        t;
    up -= u;
    vpp -= v;
    t = -(up + vpp);
    // u + v =       s      + t
    //       = round(u + v) + t
    return {s: s, t: t};
  };

  /**
   * @summary Evaluate a polynomial.
   * @param {integer} N the order of the polynomial.
   * @param {array} p the coefficient array (of size N + 1) (leading
   *   order coefficient first)
   * @param {number} x the variable.
   * @returns {number} the value of the polynomial.
   */
  m.polyval = function(N, p, s, x) {
    var y = N < 0 ? 0 : p[s++];
    while (--N >= 0) y = y * x + p[s++];
    return y;
  };

  /**
   * @summary Coarsen a value close to zero.
   * @param {number} x
   * @returns {number} the coarsened value.
   */
  m.AngRound = function(x) {
    // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
    // reals = 0.7 pm on the earth if x is an angle in degrees.  (This is about
    // 1000 times more resolution than we get with angles around 90 degrees.)
    // We use this to avoid having to deal with near singular cases when x is
    // non-zero but tiny (e.g., 1.0e-200).  This converts -0 to +0; however
    // tiny negative numbers get converted to -0.
    if (x === 0) return x;
    var z = 1/16,
        y = Math.abs(x);
    // The compiler mustn't "simplify" z - (z - y) to y
    y = y < z ? z - (z - y) : y;
    return x < 0 ? -y : y;
  };

  /**
   * @summary The remainder function.
   * @param {number} x the numerator of the division
   * @param {number} y the denominator of the division
   * @return {number} the remainder in the range [&minus;y/2, y/2].
   * <p>
   * The range of x is unrestricted; y must be positive.
   */
  m.remainder = function(x, y) {
    x = x % y;
    return x < -y/2 ? x + y : (x < y/2 ? x : x - y);
  };

  /**
   * @summary Normalize an angle.
   * @param {number} x the angle in degrees.
   * @returns {number} the angle reduced to the range (&minus;180&deg;,
   *   180&deg;].
   */
  m.AngNormalize = function(x) {
    // Place angle in (-180, 180].
    x = m.remainder(x, 360);
    return x == -180 ? 180 : x;
  };

  /**
   * @summary Normalize a latitude.
   * @param {number} x the angle in degrees.
   * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
   *   otherwise return NaN.
   */
  m.LatFix = function(x) {
    // Replace angle with NaN if outside [-90, 90].
    return Math.abs(x) > 90 ? Number.NaN : x;
  };

  /**
   * @summary The exact difference of two angles reduced to (&minus;180&deg;,
   *   180&deg;]
   * @param {number} x the first angle in degrees.
   * @param {number} y the second angle in degrees.
   * @return {object} diff the exact difference, y &minus; x.
   *
   * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
   * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
   * round(z).  If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
   */
  m.AngDiff = function(x, y) {
    // Compute y - x and reduce to [-180,180] accurately.
    var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
        d = m.AngNormalize(r.s),
        t = r.t;
    return m.sum(d === 180 && t > 0 ? -180 : d, t);
  };

  /**
   * @summary Evaluate the sine and cosine function with the argument in
   *   degrees
   * @param {number} x in degrees.
   * @returns {object} r with r.s = sin(x) and r.c = cos(x).
   */
  m.sincosd = function(x) {
    // In order to minimize round-off errors, this function exactly reduces
    // the argument to the range [-45, 45] before converting it to radians.
    var r, q, s, c, sinx, cosx;
    r = x % 360;
    q = 0 + Math.round(r / 90); // If r is NaN this returns NaN
    r -= 90 * q;
    // now abs(r) <= 45
    r *= this.degree;
    // Possibly could call the gnu extension sincos
    s = Math.sin(r); c = Math.cos(r);
    switch (q & 3) {
      case 0:  sinx =  s; cosx =  c; break;
      case 1:  sinx =  c; cosx = -s; break;
      case 2:  sinx = -s; cosx = -c; break;
      default: sinx = -c; cosx =  s; break; // case 3
    }
    if (x !== 0) { sinx += 0; cosx += 0; }
    return {s: sinx, c: cosx};
  };

  /**
   * @summary Evaluate the atan2 function with the result in degrees
   * @param {number} y
   * @param {number} x
   * @returns atan2(y, x) in degrees, in the range (&minus;180&deg;
   *   180&deg;].
   */
  m.atan2d = function(y, x) {
    // In order to minimize round-off errors, this function rearranges the
    // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
    // converting it to degrees and mapping the result to the correct
    // quadrant.
    var q = 0, t, ang;
    if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
    if (x < 0) { x = -x; ++q; }
    // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
    ang = Math.atan2(y, x) / this.degree;
    switch (q) {
      // Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
      // atan2d will not be called with y = -0.  If need be, include
      //
      //   case 0: ang = 0 + ang; break;
      //
      // and handle mpfr as in AngRound.
      case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
      case 2: ang =  90 - ang; break;
      case 3: ang = -90 + ang; break;
    }
    return ang;
  };
})(GeographicLib.Math);

(function(
  /**
   * @exports GeographicLib/Accumulator
   * @description Accurate summation via the
   *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
   *   (mainly for internal use).
   */
  a, m) {

  /**
   * @class
   * @summary Accurate summation of many numbers.
   * @classdesc This allows many numbers to be added together with twice the
   *   normal precision.  In the documentation of the member functions, sum
   *   stands for the value currently held in the accumulator.
   * @param {number | Accumulator} [y = 0]  set sum = y.
   */
  a.Accumulator = function(y) {
    this.Set(y);
  };

  /**
   * @summary Set the accumulator to a number.
   * @param {number | Accumulator} [y = 0] set sum = y.
   */
  a.Accumulator.prototype.Set = function(y) {
    if (!y) y = 0;
    if (y.constructor === a.Accumulator) {
      this._s = y._s;
      this._t = y._t;
    } else {
      this._s = y;
      this._t = 0;
    }
  };

  /**
   * @summary Add a number to the accumulator.
   * @param {number} [y = 0] set sum += y.
   */
  a.Accumulator.prototype.Add = function(y) {
    // Here's Shewchuk's solution...
    // Accumulate starting at least significant end
    var u = m.sum(y, this._t),
        v = m.sum(u.s, this._s);
    u = u.t;
    this._s = v.s;
    this._t = v.t;
    // Start is _s, _t decreasing and non-adjacent.  Sum is now (s + t + u)
    // exactly with s, t, u non-adjacent and in decreasing order (except
    // for possible zeros).  The following code tries to normalize the
    // result.  Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
    // _s).  The follow does an approximate job (and maintains the
    // decreasing non-adjacent property).  Here are two "failures" using
    // 3-bit floats:
    //
    // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
    // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
    //
    // Case 2: _s+_t is not as close to s+t+u as it shold be
    // [64, 5] + 4 -> [64, 8, 1] -> [64,  8] = 72 (off by 1)
    //                    should be [80, -7] = 73 (exact)
    //
    // "Fixing" these problems is probably not worth the expense.  The
    // representation inevitably leads to small errors in the accumulated
    // values.  The additional errors illustrated here amount to 1 ulp of
    // the less significant word during each addition to the Accumulator
    // and an additional possible error of 1 ulp in the reported sum.
    //
    // Incidentally, the "ideal" representation described above is not
    // canonical, because _s = round(_s + _t) may not be true.  For
    // example, with 3-bit floats:
    //
    // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
    // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
    //
    if (this._s === 0)          // This implies t == 0,
      this._s = u;              // so result is u
    else
      this._t += u;             // otherwise just accumulate u to t.
  };

  /**
   * @summary Return the result of adding a number to sum (but
   *   don't change sum).
   * @param {number} [y = 0] the number to be added to the sum.
   * @return sum + y.
   */
  a.Accumulator.prototype.Sum = function(y) {
    var b;
    if (!y)
      return this._s;
    else {
      b = new a.Accumulator(this);
      b.Add(y);
      return b._s;
    }
  };

  /**
   * @summary Set sum = &minus;sum.
   */
  a.Accumulator.prototype.Negate = function() {
    this._s *= -1;
    this._t *= -1;
  };

  /**
   * @summary Take the remainder
   * @param {number} y the divisor of the remainder operation.
   * @return sum in range [&minus;y/2, y/2].
   */
  a.Accumulator.prototype.Remainder = function(y) {
    this._s = m.remainder(this._s, y);
    this.Add(0);
  };
})(GeographicLib.Accumulator, GeographicLib.Math);