GeodesicLine.js 17.3 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/*
 * GeodesicLine.js
 * Transcription of GeodesicLine.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js

(function(
  g,
  /**
   * @exports GeographicLib/GeodesicLine
   * @description Solve geodesic problems on a single geodesic line via the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
   *   class.
   */
  l, m) {

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {number} lat1 the initial latitude (degrees).
   * @property {number} lon1 the initial longitude (degrees).
   * @property {number} azi1 the initial azimuth (degrees).
   * @property {number} salp1 the sine of the azimuth at the first point.
   * @property {number} calp1 the cosine the azimuth at the first point.
   * @property {number} s13 the distance to point 3 (meters).
   * @property {number} a13 the arc length to point 3 (degrees).
   * @property {bitmask} caps the capabilities of the object.
   * @summary Initialize a GeodesicLine object.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   * @classdesc Performs geodesic calculations along a given geodesic line.
   *   This object is usually instantiated by
   *   {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
   *   The methods
   *   {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
   *   Geodesic.DirectLine} and
   *   {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
   *   Geodesic.InverseLine} set in addition the position of a reference point
   *   3.
   * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include; LATITUDE | AZIMUTH are always included.
   */
  l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
    var t, cbet1, sbet1, eps, s, c;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;

    this.a = geod.a;
    this.f = geod.f;
    this._b = geod._b;
    this._c2 = geod._c2;
    this._f1 = geod._f1;
    this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;

    this.lat1 = m.LatFix(lat1);
    this.lon1 = lon1;
    if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
      this.azi1 = m.AngNormalize(azi1);
      t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
    } else {
      this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
    }
    t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
    // norm(sbet1, cbet1);
    t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
    // Ensure cbet1 = +epsilon at poles
    cbet1 = Math.max(g.tiny_, cbet1);
    this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));

    // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
    // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    // is slightly better (consider the case salp1 = 0).
    this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
    // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    // sig = 0 is nearest northward crossing of equator.
    // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
    this._csig1 = this._comg1 =
      sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
    // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
    t = m.hypot(this._ssig1, this._csig1);
    this._ssig1 /= t; this._csig1 /= t;
    // norm(this._somg1, this._comg1); -- don't need to normalize!

    this._k2 = m.sq(this._calp0) * geod._ep2;
    eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);

    if (this.caps & g.CAP_C1) {
      this._A1m1 = g.A1m1f(eps);
      this._C1a = new Array(g.nC1_ + 1);
      g.C1f(eps, this._C1a);
      this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
      s = Math.sin(this._B11); c = Math.cos(this._B11);
      // tau1 = sig1 + B11
      this._stau1 = this._ssig1 * c + this._csig1 * s;
      this._ctau1 = this._csig1 * c - this._ssig1 * s;
      // Not necessary because C1pa reverts C1a
      //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
    }

    if (this.caps & g.CAP_C1p) {
      this._C1pa = new Array(g.nC1p_ + 1);
      g.C1pf(eps, this._C1pa);
    }

    if (this.caps & g.CAP_C2) {
      this._A2m1 = g.A2m1f(eps);
      this._C2a = new Array(g.nC2_ + 1);
      g.C2f(eps, this._C2a);
      this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
    }

    if (this.caps & g.CAP_C3) {
      this._C3a = new Array(g.nC3_);
      geod.C3f(eps, this._C3a);
      this._A3c = -this.f * this._salp0 * geod.A3f(eps);
      this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
    }

    if (this.caps & g.CAP_C4) {
      this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
      geod.C4f(eps, this._C4a);
      // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
      this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
    }

    this.a13 = this.s13 = Number.NaN;
  };

  /**
   * @summary Find the position on the line (general case).
   * @param {bool} arcmode is the next parameter an arc length?
   * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
   *   first point to the second in (arcmode ? degrees : meters).
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
                                                  outmask) {
    var vals = {},
        sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
        omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
        B22, AB2, J12, t, B42, salp12, calp12;
    if (!outmask) outmask = g.STANDARD;
    else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    outmask &= this.caps & g.OUT_MASK;
    vals.lat1 = this.lat1; vals.azi1 = this.azi1;
    vals.lon1 = outmask & g.LONG_UNROLL ?
      this.lon1 : m.AngNormalize(this.lon1);
    if (arcmode)
      vals.a12 = s12_a12;
    else
      vals.s12 = s12_a12;
    if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
      // Uninitialized or impossible distance calculation requested
      vals.a12 = Number.NaN;
      return vals;
    }

    // Avoid warning about uninitialized B12.
    B12 = 0; AB1 = 0;
    if (arcmode) {
      // Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * m.degree;
      t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
    } else {
      // Interpret s12_a12 as distance
      tau12 = s12_a12 / (this._b * (1 + this._A1m1));
      s = Math.sin(tau12);
      c = Math.cos(tau12);
      // tau2 = tau1 + tau12
      B12 = -g.SinCosSeries(true,
                            this._stau1 * c + this._ctau1 * s,
                            this._ctau1 * c - this._stau1 * s,
                            this._C1pa);
      sig12 = tau12 - (B12 - this._B11);
      ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
      if (Math.abs(this.f) > 0.01) {
        // Reverted distance series is inaccurate for |f| > 1/100, so correct
        // sig12 with 1 Newton iteration.  The following table shows the
        // approximate maximum error for a = WGS_a() and various f relative to
        // GeodesicExact.
        //     erri = the error in the inverse solution (nm)
        //     errd = the error in the direct solution (series only) (nm)
        //     errda = the error in the direct solution
        //             (series + 1 Newton) (nm)
        //
        //       f     erri  errd errda
        //     -1/5    12e6 1.2e9  69e6
        //     -1/10  123e3  12e6 765e3
        //     -1/20   1110 108e3  7155
        //     -1/50  18.63 200.9 27.12
        //     -1/100 18.63 23.78 23.37
        //     -1/150 18.63 21.05 20.26
        //      1/150 22.35 24.73 25.83
        //      1/100 22.35 25.03 25.31
        //      1/50  29.80 231.9 30.44
        //      1/20   5376 146e3  10e3
        //      1/10  829e3  22e6 1.5e6
        //      1/5   157e6 3.8e9 280e6
        ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
        csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
        serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
          s12_a12 / this._b;
        sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
        ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
        // Update B12 below
      }
    }

    // sig2 = sig1 + sig12
    ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
    csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
    dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
    if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      if (arcmode || Math.abs(this.f) > 0.01)
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
      AB1 = (1 + this._A1m1) * (B12 - this._B11);
    }
    // sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = this._calp0 * ssig2;
    // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
    cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
    if (cbet2 === 0)
      // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = g.tiny_;
    // tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize

    if (arcmode && (outmask & g.DISTANCE))
      vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);

    if (outmask & g.LONGITUDE) {
      // tan(omg2) = sin(alp0) * tan(sig2)
      somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
      E = m.copysign(1, this._salp0);
      // omg12 = omg2 - omg1
      omg12 = outmask & g.LONG_UNROLL ?
        E * (sig12 -
             (Math.atan2(ssig2, csig2) -
              Math.atan2(this._ssig1, this._csig1)) +
             (Math.atan2(E * somg2, comg2) -
              Math.atan2(E * this._somg1, this._comg1))) :
        Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
                     comg2 * this._comg1 + somg2 * this._somg1);
      lam12 = omg12 + this._A3c *
        ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
                   this._B31));
      lon12 = lam12 / m.degree;
      vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
        m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
    }

    if (outmask & g.LATITUDE)
      vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);

    if (outmask & g.AZIMUTH)
      vals.azi2 = m.atan2d(salp2, calp2);

    if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
      AB2 = (1 + this._A2m1) * (B22 - this._B21);
      J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
      if (outmask & g.REDUCEDLENGTH)
        // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        // accurate cancellation in the case of coincident points.
        vals.m12 = this._b * ((      dn2 * (this._csig1 * ssig2) -
                               this._dn1 * (this._ssig1 * csig2)) -
                              this._csig1 * csig2 * J12);
      if (outmask & g.GEODESICSCALE) {
        t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
          (this._dn1 + dn2);
        vals.M12 = csig12 +
          (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
        vals.M21 = csig12 -
          (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
      }
    }

    if (outmask & g.AREA) {
      B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
      if (this._calp0 === 0 || this._salp0 === 0) {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * this.calp1 - calp2 * this.salp1;
        calp12 = calp2 * this.calp1 + salp2 * this.salp1;
      } else {
        // tan(alp) = tan(alp0) * sec(sig)
        // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        // If csig12 > 0, write
        //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        // else
        //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        // No need to normalize
        salp12 = this._calp0 * this._salp0 *
          (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
           ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
        calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
      }
      vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
        this._A4 * (B42 - this._B41);
    }

    if (!arcmode)
      vals.a12 = sig12 / m.degree;
    return vals;
  };

  /**
   * @summary Find the position on the line given s12.
   * @param {number} s12 the distance from the first point to the second in
   *   meters.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.Position = function(s12, outmask) {
    return this.GenPosition(false, s12, outmask);
  };

  /**
   * @summary Find the position on the line given a12.
   * @param {number} a12 the arc length from the first point to the second in
   *   degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
    return this.GenPosition(true, a12, outmask);
  };

  /**
   * @summary Specify position of point 3 in terms of either distance or arc
   *   length.
   * @param {bool} arcmode boolean flag determining the meaning of the second
   *   parameter; if arcmode is false, then the GeodesicLine object must have
   *   been constructed with caps |= DISTANCE_IN.
   * @param {number} s13_a13 if arcmode is false, this is the distance from
   *   point 1 to point 3 (meters); otherwise it is the arc length from
   *   point 1 to point 3 (degrees); it can be negative.
   */
  l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
    if (arcmode)
      this.SetArc(s13_a13);
    else
      this.SetDistance(s13_a13);
  };

  /**
   * @summary Specify position of point 3 in terms distance.
   * @param {number} s13 the distance from point 1 to point 3 (meters); it
   *   can be negative.
   */
  l.GeodesicLine.prototype.SetDistance = function(s13) {
    var r;
    this.s13 = s13;
    r = this.GenPosition(false, this.s13, g.ARC);
    this.a13 = 0 + r.a12;       // the 0+ converts undefined into NaN
  };

  /**
   * @summary Specify position of point 3 in terms of arc length.
   * @param {number} a13 the arc length from point 1 to point 3 (degrees);
   *   it can be negative.
   */
  l.GeodesicLine.prototype.SetArc = function(a13) {
    var r;
    this.a13 = a13;
    r = this.GenPosition(true, this.a13, g.DISTANCE);
    this.s13 = 0 + r.s12;       // the 0+ converts undefined into NaN
  };

})(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);