geographiclib.js 115 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * Geodesic routines from GeographicLib translated to JavaScript.  See
 * https://geographiclib.sourceforge.io/html/js/
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * This file is the concatenation and compression of the JavaScript files in
 * doc/scripts/GeographicLib in the source tree for GeographicLib.
 *
 * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 *
 * Version: 1.50
 * File inventory:
 *   Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
 */

(function(cb) {

/**************** Math.js ****************/
/*
 * Math.js
 * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
 * JavaScript.
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

/**
 * @namespace GeographicLib
 * @description The parent namespace for the following modules:
 * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
 *   engine for solving geodesic problems via the
 *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
 * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
 *   computes points along a single geodesic line via the
 *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
 *   class.
 * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
 *   computes the area of a geodesic polygon via the
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
 *   class.
 * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
 *   and encoding of angles in degree, minutes, and seconds, via static
 *   functions in this module.
 * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
 *   constants specifying the version numbers and the parameters for the WGS84
 *   ellipsoid.
 *
 * The following modules are used internally by the package:
 * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
 *   mathematical functions.
 * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
 *   interally used by
 *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
 *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
 *   for summing the contributions to the area of a polygon.
 */
"use strict";
var GeographicLib = {};
GeographicLib.Constants = {};
GeographicLib.Math = {};
GeographicLib.Accumulator = {};

(function(
  /**
   * @exports GeographicLib/Constants
   * @description Define constants defining the version and WGS84 parameters.
   */
  c) {

  /**
   * @constant
   * @summary WGS84 parameters.
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   */
  c.WGS84 = { a: 6378137, f: 1/298.257223563 };
  /**
   * @constant
   * @summary an array of version numbers.
   * @property {number} major the major version number.
   * @property {number} minor the minor version number.
   * @property {number} patch the patch number.
   */
  c.version = { major: 1, minor: 50, patch: 0 };
  /**
   * @constant
   * @summary version string
   */
  c.version_string = "1.50";
})(GeographicLib.Constants);

(function(
  /**
   * @exports GeographicLib/Math
   * @description Some useful mathematical constants and functions (mainly for
   *   internal use).
   */
  m) {

  /**
   * @summary The number of digits of precision in floating-point numbers.
   * @constant {number}
   */
  m.digits = 53;
  /**
   * @summary The machine epsilon.
   * @constant {number}
   */
  m.epsilon = Math.pow(0.5, m.digits - 1);
  /**
   * @summary The factor to convert degrees to radians.
   * @constant {number}
   */
  m.degree = Math.PI/180;

  /**
   * @summary Square a number.
   * @param {number} x the number.
   * @returns {number} the square.
   */
  m.sq = function(x) { return x * x; };

  /**
   * @summary The hypotenuse function.
   * @param {number} x the first side.
   * @param {number} y the second side.
   * @returns {number} the hypotenuse.
   */
  m.hypot = Math.hypot || function(x, y) {
    var a, b;
    x = Math.abs(x);
    y = Math.abs(y);
    a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
    return a * Math.sqrt(1 + b * b);
  };

  /**
   * @summary Cube root function.
   * @param {number} x the argument.
   * @returns {number} the real cube root.
   */
  m.cbrt = Math.cbrt || function(x) {
    var y = Math.pow(Math.abs(x), 1/3);
    return x > 0 ? y : (x < 0 ? -y : x);
  };

  /**
   * @summary The log1p function.
   * @param {number} x the argument.
   * @returns {number} log(1 + x).
   */
  m.log1p = Math.log1p || function(x) {
    var y = 1 + x,
        z = y - 1;
    // Here's the explanation for this magic: y = 1 + z, exactly, and z
    // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
    // a good approximation to the true log(1 + x)/x.  The multiplication x *
    // (log(y)/z) introduces little additional error.
    return z === 0 ? x : x * Math.log(y) / z;
  };

  /**
   * @summary Inverse hyperbolic tangent.
   * @param {number} x the argument.
   * @returns {number} tanh<sup>&minus;1</sup> x.
   */
  m.atanh = Math.atanh || function(x) {
    var y = Math.abs(x);          // Enforce odd parity
    y = m.log1p(2 * y/(1 - y))/2;
    return x > 0 ? y : (x < 0 ? -y : x);
  };

  /**
   * @summary Copy the sign.
   * @param {number} x gives the magitude of the result.
   * @param {number} y gives the sign of the result.
   * @returns {number} value with the magnitude of x and with the sign of y.
   */
  m.copysign = function(x, y) {
    return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
  };

  /**
   * @summary An error-free sum.
   * @param {number} u
   * @param {number} v
   * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
   *   round(u + v)
   */
  m.sum = function(u, v) {
    var s = u + v,
        up = s - v,
        vpp = s - up,
        t;
    up -= u;
    vpp -= v;
    t = -(up + vpp);
    // u + v =       s      + t
    //       = round(u + v) + t
    return {s: s, t: t};
  };

  /**
   * @summary Evaluate a polynomial.
   * @param {integer} N the order of the polynomial.
   * @param {array} p the coefficient array (of size N + 1) (leading
   *   order coefficient first)
   * @param {number} x the variable.
   * @returns {number} the value of the polynomial.
   */
  m.polyval = function(N, p, s, x) {
    var y = N < 0 ? 0 : p[s++];
    while (--N >= 0) y = y * x + p[s++];
    return y;
  };

  /**
   * @summary Coarsen a value close to zero.
   * @param {number} x
   * @returns {number} the coarsened value.
   */
  m.AngRound = function(x) {
    // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
    // reals = 0.7 pm on the earth if x is an angle in degrees.  (This is about
    // 1000 times more resolution than we get with angles around 90 degrees.)
    // We use this to avoid having to deal with near singular cases when x is
    // non-zero but tiny (e.g., 1.0e-200).  This converts -0 to +0; however
    // tiny negative numbers get converted to -0.
    if (x === 0) return x;
    var z = 1/16,
        y = Math.abs(x);
    // The compiler mustn't "simplify" z - (z - y) to y
    y = y < z ? z - (z - y) : y;
    return x < 0 ? -y : y;
  };

  /**
   * @summary The remainder function.
   * @param {number} x the numerator of the division
   * @param {number} y the denominator of the division
   * @return {number} the remainder in the range [&minus;y/2, y/2].
   * <p>
   * The range of x is unrestricted; y must be positive.
   */
  m.remainder = function(x, y) {
    x = x % y;
    return x < -y/2 ? x + y : (x < y/2 ? x : x - y);
  };

  /**
   * @summary Normalize an angle.
   * @param {number} x the angle in degrees.
   * @returns {number} the angle reduced to the range (&minus;180&deg;,
   *   180&deg;].
   */
  m.AngNormalize = function(x) {
    // Place angle in (-180, 180].
    x = m.remainder(x, 360);
    return x == -180 ? 180 : x;
  };

  /**
   * @summary Normalize a latitude.
   * @param {number} x the angle in degrees.
   * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
   *   otherwise return NaN.
   */
  m.LatFix = function(x) {
    // Replace angle with NaN if outside [-90, 90].
    return Math.abs(x) > 90 ? Number.NaN : x;
  };

  /**
   * @summary The exact difference of two angles reduced to (&minus;180&deg;,
   *   180&deg;]
   * @param {number} x the first angle in degrees.
   * @param {number} y the second angle in degrees.
   * @return {object} diff the exact difference, y &minus; x.
   *
   * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
   * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
   * round(z).  If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
   */
  m.AngDiff = function(x, y) {
    // Compute y - x and reduce to [-180,180] accurately.
    var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
        d = m.AngNormalize(r.s),
        t = r.t;
    return m.sum(d === 180 && t > 0 ? -180 : d, t);
  };

  /**
   * @summary Evaluate the sine and cosine function with the argument in
   *   degrees
   * @param {number} x in degrees.
   * @returns {object} r with r.s = sin(x) and r.c = cos(x).
   */
  m.sincosd = function(x) {
    // In order to minimize round-off errors, this function exactly reduces
    // the argument to the range [-45, 45] before converting it to radians.
    var r, q, s, c, sinx, cosx;
    r = x % 360;
    q = 0 + Math.round(r / 90); // If r is NaN this returns NaN
    r -= 90 * q;
    // now abs(r) <= 45
    r *= this.degree;
    // Possibly could call the gnu extension sincos
    s = Math.sin(r); c = Math.cos(r);
    switch (q & 3) {
      case 0:  sinx =  s; cosx =  c; break;
      case 1:  sinx =  c; cosx = -s; break;
      case 2:  sinx = -s; cosx = -c; break;
      default: sinx = -c; cosx =  s; break; // case 3
    }
    if (x !== 0) { sinx += 0; cosx += 0; }
    return {s: sinx, c: cosx};
  };

  /**
   * @summary Evaluate the atan2 function with the result in degrees
   * @param {number} y
   * @param {number} x
   * @returns atan2(y, x) in degrees, in the range (&minus;180&deg;
   *   180&deg;].
   */
  m.atan2d = function(y, x) {
    // In order to minimize round-off errors, this function rearranges the
    // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
    // converting it to degrees and mapping the result to the correct
    // quadrant.
    var q = 0, t, ang;
    if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
    if (x < 0) { x = -x; ++q; }
    // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
    ang = Math.atan2(y, x) / this.degree;
    switch (q) {
      // Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
      // atan2d will not be called with y = -0.  If need be, include
      //
      //   case 0: ang = 0 + ang; break;
      //
      // and handle mpfr as in AngRound.
      case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
      case 2: ang =  90 - ang; break;
      case 3: ang = -90 + ang; break;
    }
    return ang;
  };
})(GeographicLib.Math);

(function(
  /**
   * @exports GeographicLib/Accumulator
   * @description Accurate summation via the
   *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
   *   (mainly for internal use).
   */
  a, m) {

  /**
   * @class
   * @summary Accurate summation of many numbers.
   * @classdesc This allows many numbers to be added together with twice the
   *   normal precision.  In the documentation of the member functions, sum
   *   stands for the value currently held in the accumulator.
   * @param {number | Accumulator} [y = 0]  set sum = y.
   */
  a.Accumulator = function(y) {
    this.Set(y);
  };

  /**
   * @summary Set the accumulator to a number.
   * @param {number | Accumulator} [y = 0] set sum = y.
   */
  a.Accumulator.prototype.Set = function(y) {
    if (!y) y = 0;
    if (y.constructor === a.Accumulator) {
      this._s = y._s;
      this._t = y._t;
    } else {
      this._s = y;
      this._t = 0;
    }
  };

  /**
   * @summary Add a number to the accumulator.
   * @param {number} [y = 0] set sum += y.
   */
  a.Accumulator.prototype.Add = function(y) {
    // Here's Shewchuk's solution...
    // Accumulate starting at least significant end
    var u = m.sum(y, this._t),
        v = m.sum(u.s, this._s);
    u = u.t;
    this._s = v.s;
    this._t = v.t;
    // Start is _s, _t decreasing and non-adjacent.  Sum is now (s + t + u)
    // exactly with s, t, u non-adjacent and in decreasing order (except
    // for possible zeros).  The following code tries to normalize the
    // result.  Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
    // _s).  The follow does an approximate job (and maintains the
    // decreasing non-adjacent property).  Here are two "failures" using
    // 3-bit floats:
    //
    // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
    // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
    //
    // Case 2: _s+_t is not as close to s+t+u as it shold be
    // [64, 5] + 4 -> [64, 8, 1] -> [64,  8] = 72 (off by 1)
    //                    should be [80, -7] = 73 (exact)
    //
    // "Fixing" these problems is probably not worth the expense.  The
    // representation inevitably leads to small errors in the accumulated
    // values.  The additional errors illustrated here amount to 1 ulp of
    // the less significant word during each addition to the Accumulator
    // and an additional possible error of 1 ulp in the reported sum.
    //
    // Incidentally, the "ideal" representation described above is not
    // canonical, because _s = round(_s + _t) may not be true.  For
    // example, with 3-bit floats:
    //
    // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
    // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
    //
    if (this._s === 0)          // This implies t == 0,
      this._s = u;              // so result is u
    else
      this._t += u;             // otherwise just accumulate u to t.
  };

  /**
   * @summary Return the result of adding a number to sum (but
   *   don't change sum).
   * @param {number} [y = 0] the number to be added to the sum.
   * @return sum + y.
   */
  a.Accumulator.prototype.Sum = function(y) {
    var b;
    if (!y)
      return this._s;
    else {
      b = new a.Accumulator(this);
      b.Add(y);
      return b._s;
    }
  };

  /**
   * @summary Set sum = &minus;sum.
   */
  a.Accumulator.prototype.Negate = function() {
    this._s *= -1;
    this._t *= -1;
  };

  /**
   * @summary Take the remainder
   * @param {number} y the divisor of the remainder operation.
   * @return sum in range [&minus;y/2, y/2].
   */
  a.Accumulator.prototype.Remainder = function(y) {
    this._s = m.remainder(this._s, y);
    this.Add(0);
  };
})(GeographicLib.Accumulator, GeographicLib.Math);

/**************** Geodesic.js ****************/
/*
 * Geodesic.js
 * Transcription of Geodesic.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER Math.js

GeographicLib.Geodesic = {};
GeographicLib.GeodesicLine = {};
GeographicLib.PolygonArea = {};

(function(
  /**
   * @exports GeographicLib/Geodesic
   * @description Solve geodesic problems via the
   *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
   */
  g, l, p, m, c) {

  var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
      nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
      nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
      nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
      nA3x_ = nA3_,
      nC3x_, nC4x_,
      maxit1_ = 20,
      maxit2_ = maxit1_ + m.digits + 10,
      tol0_ = m.epsilon,
      tol1_ = 200 * tol0_,
      tol2_ = Math.sqrt(tol0_),
      tolb_ = tol0_ * tol1_,
      xthresh_ = 1000 * tol2_,
      CAP_NONE = 0,
      CAP_ALL  = 0x1F,
      CAP_MASK = CAP_ALL,
      OUT_ALL  = 0x7F80,
      astroid,
      A1m1f_coeff, C1f_coeff, C1pf_coeff,
      A2m1f_coeff, C2f_coeff,
      A3_coeff, C3_coeff, C4_coeff;

  g.tiny_ = Math.sqrt(Number.MIN_VALUE);
  g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
  g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
  g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
  g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
  g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
  nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
  nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
  g.CAP_C1   = 1<<0;
  g.CAP_C1p  = 1<<1;
  g.CAP_C2   = 1<<2;
  g.CAP_C3   = 1<<3;
  g.CAP_C4   = 1<<4;

  g.NONE          = 0;
  g.ARC           = 1<<6;
  g.LATITUDE      = 1<<7  | CAP_NONE;
  g.LONGITUDE     = 1<<8  | g.CAP_C3;
  g.AZIMUTH       = 1<<9  | CAP_NONE;
  g.DISTANCE      = 1<<10 | g.CAP_C1;
  g.STANDARD      = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
  g.DISTANCE_IN   = 1<<11 | g.CAP_C1 | g.CAP_C1p;
  g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
  g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
  g.AREA          = 1<<14 | g.CAP_C4;
  g.ALL           = OUT_ALL| CAP_ALL;
  g.LONG_UNROLL   = 1<<15;
  g.OUT_MASK      = OUT_ALL| g.LONG_UNROLL;

  g.SinCosSeries = function(sinp, sinx, cosx, c) {
    // Evaluate
    // y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
    //            sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
    // using Clenshaw summation.  N.B. c[0] is unused for sin series
    // Approx operation count = (n + 5) mult and (2 * n + 2) add
    var k = c.length,           // Point to one beyond last element
        n = k - (sinp ? 1 : 0),
        ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
        y0 = n & 1 ? c[--k] : 0, y1 = 0;        // accumulators for sum
    // Now n is even
    n = Math.floor(n/2);
    while (n--) {
      // Unroll loop x 2, so accumulators return to their original role
      y1 = ar * y0 - y1 + c[--k];
      y0 = ar * y1 - y0 + c[--k];
    }
    return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
            cosx * (y0 - y1));            // cos(x) * (y0 - y1)
  };

  astroid = function(x, y) {
    // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
    // root k.  This solution is adapted from Geocentric::Reverse.
    var k,
        p = m.sq(x),
        q = m.sq(y),
        r = (p + q - 1) / 6,
        S, r2, r3, disc, u, T3, T, ang, v, uv, w;
    if ( !(q === 0 && r <= 0) ) {
      // Avoid possible division by zero when r = 0 by multiplying
      // equations for s and t by r^3 and r, resp.
      S = p * q / 4;            // S = r^3 * s
      r2 = m.sq(r);
      r3 = r * r2;
      // The discriminant of the quadratic equation for T3.  This is
      // zero on the evolute curve p^(1/3)+q^(1/3) = 1
      disc = S * (S + 2 * r3);
      u = r;
      if (disc >= 0) {
        T3 = S + r3;
        // Pick the sign on the sqrt to maximize abs(T3).  This
        // minimizes loss of precision due to cancellation.  The
        // result is unchanged because of the way the T is used
        // in definition of u.
        T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc);    // T3 = (r * t)^3
        // N.B. cbrt always returns the real root.  cbrt(-8) = -2.
        T = m.cbrt(T3);     // T = r * t
        // T can be zero; but then r2 / T -> 0.
        u += T + (T !== 0 ? r2 / T : 0);
      } else {
        // T is complex, but the way u is defined the result is real.
        ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
        // There are three possible cube roots.  We choose the
        // root which avoids cancellation.  Note that disc < 0
        // implies that r < 0.
        u += 2 * r * Math.cos(ang / 3);
      }
      v = Math.sqrt(m.sq(u) + q);       // guaranteed positive
      // Avoid loss of accuracy when u < 0.
      uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
      w = (uv - q) / (2 * v);           // positive?
      // Rearrange expression for k to avoid loss of accuracy due to
      // subtraction.  Division by 0 not possible because uv > 0, w >= 0.
      k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
    } else {                                  // q == 0 && r <= 0
      // y = 0 with |x| <= 1.  Handle this case directly.
      // for y small, positive root is k = abs(y)/sqrt(1-x^2)
      k = 0;
    }
    return k;
  };

  A1m1f_coeff = [
    // (1-eps)*A1-1, polynomial in eps2 of order 3
      +1, 4, 64, 0, 256
  ];

  // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
  g.A1m1f = function(eps) {
    var p = Math.floor(nA1_/2),
        t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
    return (t + eps) / (1 - eps);
  };

  C1f_coeff = [
    // C1[1]/eps^1, polynomial in eps2 of order 2
      -1, 6, -16, 32,
    // C1[2]/eps^2, polynomial in eps2 of order 2
      -9, 64, -128, 2048,
    // C1[3]/eps^3, polynomial in eps2 of order 1
      +9, -16, 768,
    // C1[4]/eps^4, polynomial in eps2 of order 1
      +3, -5, 512,
    // C1[5]/eps^5, polynomial in eps2 of order 0
      -7, 1280,
    // C1[6]/eps^6, polynomial in eps2 of order 0
      -7, 2048
  ];

  // The coefficients C1[l] in the Fourier expansion of B1
  g.C1f = function(eps, c) {
    var eps2 = m.sq(eps),
        d = eps,
        o = 0,
        l, p;
    for (l = 1; l <= g.nC1_; ++l) {     // l is index of C1p[l]
      p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
      c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
      o += p + 2;
      d *= eps;
    }
  };

  C1pf_coeff = [
    // C1p[1]/eps^1, polynomial in eps2 of order 2
      +205, -432, 768, 1536,
    // C1p[2]/eps^2, polynomial in eps2 of order 2
      +4005, -4736, 3840, 12288,
    // C1p[3]/eps^3, polynomial in eps2 of order 1
      -225, 116, 384,
    // C1p[4]/eps^4, polynomial in eps2 of order 1
      -7173, 2695, 7680,
    // C1p[5]/eps^5, polynomial in eps2 of order 0
      +3467, 7680,
    // C1p[6]/eps^6, polynomial in eps2 of order 0
      +38081, 61440
  ];

  // The coefficients C1p[l] in the Fourier expansion of B1p
  g.C1pf = function(eps, c) {
    var eps2 = m.sq(eps),
        d = eps,
        o = 0,
        l, p;
    for (l = 1; l <= g.nC1p_; ++l) {     // l is index of C1p[l]
      p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
      c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
      o += p + 2;
      d *= eps;
    }
  };

  A2m1f_coeff = [
    // (eps+1)*A2-1, polynomial in eps2 of order 3
      -11, -28, -192, 0, 256
  ];

  // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
  g.A2m1f = function(eps) {
    var p = Math.floor(nA2_/2),
        t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
    return (t - eps) / (1 + eps);
  };

  C2f_coeff = [
    // C2[1]/eps^1, polynomial in eps2 of order 2
      +1, 2, 16, 32,
    // C2[2]/eps^2, polynomial in eps2 of order 2
      +35, 64, 384, 2048,
    // C2[3]/eps^3, polynomial in eps2 of order 1
      +15, 80, 768,
    // C2[4]/eps^4, polynomial in eps2 of order 1
      +7, 35, 512,
    // C2[5]/eps^5, polynomial in eps2 of order 0
      +63, 1280,
    // C2[6]/eps^6, polynomial in eps2 of order 0
      +77, 2048
  ];

  // The coefficients C2[l] in the Fourier expansion of B2
  g.C2f = function(eps, c) {
    var eps2 = m.sq(eps),
        d = eps,
        o = 0,
        l, p;
    for (l = 1; l <= g.nC2_; ++l) {     // l is index of C2[l]
      p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
      c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
      o += p + 2;
      d *= eps;
    }
  };

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @summary Initialize a Geodesic object for a specific ellipsoid.
   * @classdesc Performs geodesic calculations on an ellipsoid of revolution.
   *   The routines for solving the direct and inverse problems return an
   *   object with some of the following fields set: lat1, lon1, azi1, lat2,
   *   lon2, azi2, s12, a12, m12, M12, M21, S12.  See {@tutorial 2-interface},
   *   "The results".
   * @example
   * var GeographicLib = require("geographiclib"),
   *     geod = GeographicLib.Geodesic.WGS84;
   * var inv = geod.Inverse(1,2,3,4);
   * console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
   *             ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
   *             ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
   *             ", s12 = " + inv.s12);
   * @param {number} a the equatorial radius of the ellipsoid (meters).
   * @param {number} f the flattening of the ellipsoid.  Setting f = 0 gives
   *   a sphere (on which geodesics are great circles).  Negative f gives a
   *   prolate ellipsoid.
   * @throws an error if the parameters are illegal.
   */
  g.Geodesic = function(a, f) {
    this.a = a;
    this.f = f;
    this._f1 = 1 - this.f;
    this._e2 = this.f * (2 - this.f);
    this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
    this._n = this.f / ( 2 - this.f);
    this._b = this.a * this._f1;
    // authalic radius squared
    this._c2 = (m.sq(this.a) + m.sq(this._b) *
                (this._e2 === 0 ? 1 :
                 (this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
                  Math.atan(Math.sqrt(-this._e2))) /
                 Math.sqrt(Math.abs(this._e2))))/2;
    // The sig12 threshold for "really short".  Using the auxiliary sphere
    // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
    // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
    // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
    // f and sig12, the max error occurs for lines near the pole.  If the old
    // rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
    // by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
    // Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
    // abs(f)) stops etol2 getting too large in the nearly spherical case.
    this._etol2 = 0.1 * tol2_ /
      Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
                 Math.min(1.0, 1 - this.f/2) / 2 );
    if (!(isFinite(this.a) && this.a > 0))
      throw new Error("Equatorial radius is not positive");
    if (!(isFinite(this._b) && this._b > 0))
      throw new Error("Polar semi-axis is not positive");
    this._A3x = new Array(nA3x_);
    this._C3x = new Array(nC3x_);
    this._C4x = new Array(nC4x_);
    this.A3coeff();
    this.C3coeff();
    this.C4coeff();
  };

  A3_coeff = [
    // A3, coeff of eps^5, polynomial in n of order 0
      -3, 128,
    // A3, coeff of eps^4, polynomial in n of order 1
      -2, -3, 64,
    // A3, coeff of eps^3, polynomial in n of order 2
      -1, -3, -1, 16,
    // A3, coeff of eps^2, polynomial in n of order 2
      +3, -1, -2, 8,
    // A3, coeff of eps^1, polynomial in n of order 1
      +1, -1, 2,
    // A3, coeff of eps^0, polynomial in n of order 0
      +1, 1
  ];

  // The scale factor A3 = mean value of (d/dsigma)I3
  g.Geodesic.prototype.A3coeff = function() {
    var o = 0, k = 0,
        j, p;
    for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
      p = Math.min(nA3_ - j - 1, j);  // order of polynomial in n
      this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
        A3_coeff[o + p + 1];
      o += p + 2;
    }
  };

  C3_coeff = [
    // C3[1], coeff of eps^5, polynomial in n of order 0
      +3, 128,
    // C3[1], coeff of eps^4, polynomial in n of order 1
      +2, 5, 128,
    // C3[1], coeff of eps^3, polynomial in n of order 2
      -1, 3, 3, 64,
    // C3[1], coeff of eps^2, polynomial in n of order 2
      -1, 0, 1, 8,
    // C3[1], coeff of eps^1, polynomial in n of order 1
      -1, 1, 4,
    // C3[2], coeff of eps^5, polynomial in n of order 0
      +5, 256,
    // C3[2], coeff of eps^4, polynomial in n of order 1
      +1, 3, 128,
    // C3[2], coeff of eps^3, polynomial in n of order 2
      -3, -2, 3, 64,
    // C3[2], coeff of eps^2, polynomial in n of order 2
      +1, -3, 2, 32,
    // C3[3], coeff of eps^5, polynomial in n of order 0
      +7, 512,
    // C3[3], coeff of eps^4, polynomial in n of order 1
      -10, 9, 384,
    // C3[3], coeff of eps^3, polynomial in n of order 2
      +5, -9, 5, 192,
    // C3[4], coeff of eps^5, polynomial in n of order 0
      +7, 512,
    // C3[4], coeff of eps^4, polynomial in n of order 1
      -14, 7, 512,
    // C3[5], coeff of eps^5, polynomial in n of order 0
      +21, 2560
  ];

  // The coefficients C3[l] in the Fourier expansion of B3
  g.Geodesic.prototype.C3coeff = function() {
    var o = 0, k = 0,
        l, j, p;
    for (l = 1; l < g.nC3_; ++l) {        // l is index of C3[l]
      for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
        p = Math.min(g.nC3_ - j - 1, j);  // order of polynomial in n
        this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
          C3_coeff[o + p + 1];
        o += p + 2;
      }
    }
  };

  C4_coeff = [
    // C4[0], coeff of eps^5, polynomial in n of order 0
      +97, 15015,
    // C4[0], coeff of eps^4, polynomial in n of order 1
      +1088, 156, 45045,
    // C4[0], coeff of eps^3, polynomial in n of order 2
      -224, -4784, 1573, 45045,
    // C4[0], coeff of eps^2, polynomial in n of order 3
      -10656, 14144, -4576, -858, 45045,
    // C4[0], coeff of eps^1, polynomial in n of order 4
      +64, 624, -4576, 6864, -3003, 15015,
    // C4[0], coeff of eps^0, polynomial in n of order 5
      +100, 208, 572, 3432, -12012, 30030, 45045,
    // C4[1], coeff of eps^5, polynomial in n of order 0
      +1, 9009,
    // C4[1], coeff of eps^4, polynomial in n of order 1
      -2944, 468, 135135,
    // C4[1], coeff of eps^3, polynomial in n of order 2
      +5792, 1040, -1287, 135135,
    // C4[1], coeff of eps^2, polynomial in n of order 3
      +5952, -11648, 9152, -2574, 135135,
    // C4[1], coeff of eps^1, polynomial in n of order 4
      -64, -624, 4576, -6864, 3003, 135135,
    // C4[2], coeff of eps^5, polynomial in n of order 0
      +8, 10725,
    // C4[2], coeff of eps^4, polynomial in n of order 1
      +1856, -936, 225225,
    // C4[2], coeff of eps^3, polynomial in n of order 2
      -8448, 4992, -1144, 225225,
    // C4[2], coeff of eps^2, polynomial in n of order 3
      -1440, 4160, -4576, 1716, 225225,
    // C4[3], coeff of eps^5, polynomial in n of order 0
      -136, 63063,
    // C4[3], coeff of eps^4, polynomial in n of order 1
      +1024, -208, 105105,
    // C4[3], coeff of eps^3, polynomial in n of order 2
      +3584, -3328, 1144, 315315,
    // C4[4], coeff of eps^5, polynomial in n of order 0
      -128, 135135,
    // C4[4], coeff of eps^4, polynomial in n of order 1
      -2560, 832, 405405,
    // C4[5], coeff of eps^5, polynomial in n of order 0
      +128, 99099
  ];

  g.Geodesic.prototype.C4coeff = function() {
    var o = 0, k = 0,
        l, j, p;
    for (l = 0; l < g.nC4_; ++l) {        // l is index of C4[l]
      for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
        p = g.nC4_ - j - 1;               // order of polynomial in n
        this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
          C4_coeff[o + p + 1];
        o += p + 2;
      }
    }
  };

  g.Geodesic.prototype.A3f = function(eps) {
    // Evaluate A3
    return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
  };

  g.Geodesic.prototype.C3f = function(eps, c) {
    // Evaluate C3 coeffs
    // Elements c[1] thru c[nC3_ - 1] are set
    var mult = 1,
        o = 0,
        l, p;
    for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
      p = g.nC3_ - l - 1;          // order of polynomial in eps
      mult *= eps;
      c[l] = mult * m.polyval(p, this._C3x, o, eps);
      o += p + 1;
    }
  };

  g.Geodesic.prototype.C4f = function(eps, c) {
    // Evaluate C4 coeffs
    // Elements c[0] thru c[g.nC4_ - 1] are set
    var mult = 1,
        o = 0,
        l, p;
    for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
      p = g.nC4_ - l - 1;          // order of polynomial in eps
      c[l] = mult * m.polyval(p, this._C4x, o, eps);
      o += p + 1;
      mult *= eps;
    }
  };

  // return s12b, m12b, m0, M12, M21
  g.Geodesic.prototype.Lengths = function(eps, sig12,
                                          ssig1, csig1, dn1, ssig2, csig2, dn2,
                                          cbet1, cbet2, outmask,
                                          C1a, C2a) {
    // Return m12b = (reduced length)/_b; also calculate s12b =
    // distance/_b, and m0 = coefficient of secular term in
    // expression for reduced length.
    outmask &= g.OUT_MASK;
    var vals = {},
        m0x = 0, J12 = 0, A1 = 0, A2 = 0,
        B1, B2, l, csig12, t;
    if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      A1 = g.A1m1f(eps);
      g.C1f(eps, C1a);
      if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
        A2 = g.A2m1f(eps);
        g.C2f(eps, C2a);
        m0x = A1 - A2;
        A2 = 1 + A2;
      }
      A1 = 1 + A1;
    }
    if (outmask & g.DISTANCE) {
      B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
        g.SinCosSeries(true, ssig1, csig1, C1a);
      // Missing a factor of _b
      vals.s12b = A1 * (sig12 + B1);
      if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
        B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
          g.SinCosSeries(true, ssig1, csig1, C2a);
        J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
      }
    } else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      // Assume here that nC1_ >= nC2_
      for (l = 1; l <= g.nC2_; ++l)
        C2a[l] = A1 * C1a[l] - A2 * C2a[l];
      J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
                           g.SinCosSeries(true, ssig1, csig1, C2a));
    }
    if (outmask & g.REDUCEDLENGTH) {
      vals.m0 = m0x;
      // Missing a factor of _b.
      // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
      // accurate cancellation in the case of coincident points.
      vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
        csig1 * csig2 * J12;
    }
    if (outmask & g.GEODESICSCALE) {
      csig12 = csig1 * csig2 + ssig1 * ssig2;
      t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
      vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
      vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
    }
    return vals;
  };

  // return sig12, salp1, calp1, salp2, calp2, dnm
  g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
                                               sbet2, cbet2, dn2,
                                               lam12, slam12, clam12,
                                               C1a, C2a) {
    // Return a starting point for Newton's method in salp1 and calp1
    // (function value is -1).  If Newton's method doesn't need to be
    // used, return also salp2 and calp2 and function value is sig12.
    // salp2, calp2 only updated if return val >= 0.
    var vals = {},
        // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
        sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
        cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
        sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
        x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
        k, omg12a, lam12x;
    vals.sig12 = -1;        // Return value
    // Volatile declaration needed to fix inverse cases
    // 88.202499451857 0 -88.202499451857 179.981022032992859592
    // 89.262080389218 0 -89.262080389218 179.992207982775375662
    // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
    // which otherwise fail with g++ 4.4.4 x86 -O3
    sbet12a = sbet2 * cbet1;
    sbet12a += cbet2 * sbet1;

    shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
    if (shortline) {
      sbetm2 = m.sq(sbet1 + sbet2);
      // sin((bet1+bet2)/2)^2
      // =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
      sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
      vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
      omg12 = lam12 / (this._f1 * vals.dnm);
      somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
    } else {
      somg12 = slam12; comg12 = clam12;
    }

    vals.salp1 = cbet2 * somg12;
    vals.calp1 = comg12 >= 0 ?
      sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
      sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);

    ssig12 = m.hypot(vals.salp1, vals.calp1);
    csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
    if (shortline && ssig12 < this._etol2) {
      // really short lines
      vals.salp2 = cbet1 * somg12;
      vals.calp2 = sbet12 - cbet1 * sbet2 *
        (comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
      // norm(vals.salp2, vals.calp2);
      t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
      // Set return value
      vals.sig12 = Math.atan2(ssig12, csig12);
    } else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
               csig12 >= 0 ||
               ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
      // Nothing to do, zeroth order spherical approximation is OK
    } else {
      // Scale lam12 and bet2 to x, y coordinate system where antipodal
      // point is at origin and singular point is at y = 0, x = -1.
      lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
      if (this.f >= 0) {       // In fact f == 0 does not get here
        // x = dlong, y = dlat
        k2 = m.sq(sbet1) * this._ep2;
        eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
        lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
        betscale = lamscale * cbet1;

        x = lam12x / lamscale;
        y = sbet12a / betscale;
      } else {                  // f < 0
        // x = dlat, y = dlong
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
        bet12a = Math.atan2(sbet12a, cbet12a);
        // In the case of lon12 = 180, this repeats a calculation made
        // in Inverse.
        nvals = this.Lengths(this._n, Math.PI + bet12a,
                             sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
                             cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
        m12b = nvals.m12b; m0 = nvals.m0;
        x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
        betscale = x < -0.01 ? sbet12a / x :
          -this.f * m.sq(cbet1) * Math.PI;
        lamscale = betscale / cbet1;
        y = lam12 / lamscale;
      }

      if (y > -tol1_ && x > -1 - xthresh_) {
        // strip near cut
        if (this.f >= 0) {
          vals.salp1 = Math.min(1, -x);
          vals.calp1 = -Math.sqrt(1 - m.sq(vals.salp1));
        } else {
          vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
          vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
        }
      } else {
        // Estimate alp1, by solving the astroid problem.
        //
        // Could estimate alpha1 = theta + pi/2, directly, i.e.,
        //   calp1 = y/k; salp1 = -x/(1+k);  for f >= 0
        //   calp1 = x/(1+k); salp1 = -y/k;  for f < 0 (need to check)
        //
        // However, it's better to estimate omg12 from astroid and use
        // spherical formula to compute alp1.  This reduces the mean number of
        // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
        // (min 0 max 5).  The changes in the number of iterations are as
        // follows:
        //
        // change percent
        //    1       5
        //    0      78
        //   -1      16
        //   -2       0.6
        //   -3       0.04
        //   -4       0.002
        //
        // The histogram of iterations is (m = number of iterations estimating
        // alp1 directly, n = number of iterations estimating via omg12, total
        // number of trials = 148605):
        //
        //  iter    m      n
        //    0   148    186
        //    1 13046  13845
        //    2 93315 102225
        //    3 36189  32341
        //    4  5396      7
        //    5   455      1
        //    6    56      0
        //
        // Because omg12 is near pi, estimate work with omg12a = pi - omg12
        k = astroid(x, y);
        omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
        somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
        // Update spherical estimate of alp1 using omg12 instead of
        // lam12
        vals.salp1 = cbet2 * somg12;
        vals.calp1 = sbet12a -
          cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
      }
    }
    // Sanity check on starting guess.  Backwards check allows NaN through.
    if (!(vals.salp1 <= 0.0)) {
      // norm(vals.salp1, vals.calp1);
      t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
    } else {
      vals.salp1 = 1; vals.calp1 = 0;
    }
    return vals;
  };

  // return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
  // domg12, dlam12,
  g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1,
                                           sbet2, cbet2, dn2,
                                           salp1, calp1, slam120, clam120,
                                           diffp, C1a, C2a, C3a) {
    var vals = {},
        t, salp0, calp0,
        somg1, comg1, somg2, comg2, somg12, comg12, B312, eta, k2, nvals;
    if (sbet1 === 0 && calp1 === 0)
      // Break degeneracy of equatorial line.  This case has already been
      // handled.
      calp1 = -g.tiny_;

    // sin(alp1) * cos(bet1) = sin(alp0)
    salp0 = salp1 * cbet1;
    calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0

    // tan(bet1) = tan(sig1) * cos(alp1)
    // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
    vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
    vals.csig1 = comg1 = calp1 * cbet1;
    // norm(vals.ssig1, vals.csig1);
    t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
    // norm(somg1, comg1); -- don't need to normalize!

    // Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
    // about this case, since this can yield singularities in the Newton
    // iteration.
    // sin(alp2) * cos(bet2) = sin(alp0)
    vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
    // calp2 = sqrt(1 - sq(salp2))
    //       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
    // and subst for calp0 and rearrange to give (choose positive sqrt
    // to give alp2 in [0, pi/2]).
    vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
      Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
                                       (cbet2 - cbet1) * (cbet1 + cbet2) :
                                       (sbet1 - sbet2) * (sbet1 + sbet2))) /
      cbet2 : Math.abs(calp1);
    // tan(bet2) = tan(sig2) * cos(alp2)
    // tan(omg2) = sin(alp0) * tan(sig2).
    vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
    vals.csig2 = comg2 = vals.calp2 * cbet2;
    // norm(vals.ssig2, vals.csig2);
    t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
    // norm(somg2, comg2); -- don't need to normalize!

    // sig12 = sig2 - sig1, limit to [0, pi]
    vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
                                        vals.ssig1 * vals.csig2),
                                        vals.csig1 * vals.csig2 +
                                        vals.ssig1 * vals.ssig2);

    // omg12 = omg2 - omg1, limit to [0, pi]
    somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
    comg12 =             comg1 * comg2 + somg1 * somg2;
    // eta = omg12 - lam120
    eta = Math.atan2(somg12 * clam120 - comg12 * slam120,
                     comg12 * clam120 + somg12 * slam120);
    k2 = m.sq(calp0) * this._ep2;
    vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
    this.C3f(vals.eps, C3a);
    B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
            g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
    vals.domg12 =  -this.f * this.A3f(vals.eps) * salp0 * (vals.sig12 + B312);
    vals.lam12 = eta + vals.domg12;
    if (diffp) {
      if (vals.calp2 === 0)
        vals.dlam12 = -2 * this._f1 * dn1 / sbet1;
      else {
        nvals = this.Lengths(vals.eps, vals.sig12,
                             vals.ssig1, vals.csig1, dn1,
                             vals.ssig2, vals.csig2, dn2,
                             cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
        vals.dlam12 = nvals.m12b;
        vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
      }
    }
    return vals;
  };

  /**
   * @summary Solve the inverse geodesic problem.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} lat2 the latitude of the second point in degrees.
   * @param {number} lon2 the longitude of the second point in degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include.
   * @returns {object} the requested results
   * @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
    var r, vals;
    if (!outmask) outmask = g.STANDARD;
    if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    outmask &= g.OUT_MASK;
    r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
    vals = r.vals;
    if (outmask & g.AZIMUTH) {
      vals.azi1 = m.atan2d(r.salp1, r.calp1);
      vals.azi2 = m.atan2d(r.salp2, r.calp2);
    }
    return vals;
  };

  g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
    var vals = {},
        lon12, lon12s, lonsign, t, swapp, latsign,
        sbet1, cbet1, sbet2, cbet2, s12x, m12x,
        dn1, dn2, lam12, slam12, clam12,
        sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
        ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
        numit, salp1a, calp1a, salp1b, calp1b,
        tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
        lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
        somg12, comg12, domg12, dbet1, dbet2, salp12, calp12, sdomg12, cdomg12;
    // Compute longitude difference (AngDiff does this carefully).  Result is
    // in [-180, 180] but -180 is only for west-going geodesics.  180 is for
    // east-going and meridional geodesics.
    vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
    // If really close to the equator, treat as on equator.
    lat1 = m.AngRound(lat1);
    lat2 = m.AngRound(lat2);
    lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
    if (outmask & g.LONG_UNROLL) {
      vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
    } else {
      vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
    }
    // Make longitude difference positive.
    lonsign = lon12 >= 0 ? 1 : -1;
    // If very close to being on the same half-meridian, then make it so.
    lon12 = lonsign * m.AngRound(lon12);
    lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
    lam12 = lon12 * m.degree;
    t = m.sincosd(lon12 > 90 ? lon12s : lon12);
    slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;

    // Swap points so that point with higher (abs) latitude is point 1
    // If one latitude is a nan, then it becomes lat1.
    swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
    if (swapp < 0) {
      lonsign *= -1;
      t = lat1;
      lat1 = lat2;
      lat2 = t;
      // swap(lat1, lat2);
    }
    // Make lat1 <= 0
    latsign = lat1 < 0 ? 1 : -1;
    lat1 *= latsign;
    lat2 *= latsign;
    // Now we have
    //
    //     0 <= lon12 <= 180
    //     -90 <= lat1 <= 0
    //     lat1 <= lat2 <= -lat1
    //
    // longsign, swapp, latsign register the transformation to bring the
    // coordinates to this canonical form.  In all cases, 1 means no change was
    // made.  We make these transformations so that there are few cases to
    // check, e.g., on verifying quadrants in atan2.  In addition, this
    // enforces some symmetries in the results returned.

    t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
    // norm(sbet1, cbet1);
    t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
    // Ensure cbet1 = +epsilon at poles
    cbet1 = Math.max(g.tiny_, cbet1);

    t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
    // norm(sbet2, cbet2);
    t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
    // Ensure cbet2 = +epsilon at poles
    cbet2 = Math.max(g.tiny_, cbet2);

    // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
    // |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
    // a better measure.  This logic is used in assigning calp2 in Lambda12.
    // Sometimes these quantities vanish and in that case we force bet2 = +/-
    // bet1 exactly.  An example where is is necessary is the inverse problem
    // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
    // which failed with Visual Studio 10 (Release and Debug)

    if (cbet1 < -sbet1) {
      if (cbet2 === cbet1)
        sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
    } else {
      if (Math.abs(sbet2) === -sbet1)
        cbet2 = cbet1;
    }

    dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
    dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));

    // index zero elements of these arrays are unused
    C1a = new Array(g.nC1_ + 1);
    C2a = new Array(g.nC2_ + 1);
    C3a = new Array(g.nC3_);

    meridian = lat1 === -90 || slam12 === 0;
    if (meridian) {

      // Endpoints are on a single full meridian, so the geodesic might
      // lie on a meridian.

      calp1 = clam12; salp1 = slam12; // Head to the target longitude
      calp2 = 1; salp2 = 0;           // At the target we're heading north

      // tan(bet) = tan(sig) * cos(alp)
      ssig1 = sbet1; csig1 = calp1 * cbet1;
      ssig2 = sbet2; csig2 = calp2 * cbet2;

      // sig12 = sig2 - sig1
      sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
                                     csig1 * csig2 + ssig1 * ssig2);
      nvals = this.Lengths(this._n, sig12,
                           ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
                           outmask | g.DISTANCE | g.REDUCEDLENGTH,
                           C1a, C2a);
      s12x = nvals.s12b;
      m12x = nvals.m12b;
      // Ignore m0
      if (outmask & g.GEODESICSCALE) {
        vals.M12 = nvals.M12;
        vals.M21 = nvals.M21;
      }
      // Add the check for sig12 since zero length geodesics might yield
      // m12 < 0.  Test case was
      //
      //    echo 20.001 0 20.001 0 | GeodSolve -i
      //
      // In fact, we will have sig12 > pi/2 for meridional geodesic
      // which is not a shortest path.
      if (sig12 < 1 || m12x >= 0) {
        // Need at least 2, to handle 90 0 90 180
        if (sig12 < 3 * g.tiny_)
          sig12 = m12x = s12x = 0;
        m12x *= this._b;
        s12x *= this._b;
        vals.a12 = sig12 / m.degree;
      } else
        // m12 < 0, i.e., prolate and too close to anti-podal
        meridian = false;
    }

    somg12 = 2;
    if (!meridian &&
        sbet1 === 0 &&           // and sbet2 == 0
        (this.f <= 0 || lon12s >= this.f * 180)) {

      // Geodesic runs along equator
      calp1 = calp2 = 0; salp1 = salp2 = 1;
      s12x = this.a * lam12;
      sig12 = omg12 = lam12 / this._f1;
      m12x = this._b * Math.sin(sig12);
      if (outmask & g.GEODESICSCALE)
        vals.M12 = vals.M21 = Math.cos(sig12);
      vals.a12 = lon12 / this._f1;

    } else if (!meridian) {

      // Now point1 and point2 belong within a hemisphere bounded by a
      // meridian and geodesic is neither meridional or equatorial.

      // Figure a starting point for Newton's method
      nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                                lam12, slam12, clam12, C1a, C2a);
      sig12 = nvals.sig12;
      salp1 = nvals.salp1;
      calp1 = nvals.calp1;

      if (sig12 >= 0) {
        salp2 = nvals.salp2;
        calp2 = nvals.calp2;
        // Short lines (InverseStart sets salp2, calp2, dnm)

        dnm = nvals.dnm;
        s12x = sig12 * this._b * dnm;
        m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
        if (outmask & g.GEODESICSCALE)
          vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
        vals.a12 = sig12 / m.degree;
        omg12 = lam12 / (this._f1 * dnm);
      } else {

        // Newton's method.  This is a straightforward solution of f(alp1) =
        // lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
        // root in the interval (0, pi) and its derivative is positive at the
        // root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
        // alp1.  During the course of the iteration, a range (alp1a, alp1b) is
        // maintained which brackets the root and with each evaluation of
        // f(alp) the range is shrunk if possible.  Newton's method is
        // restarted whenever the derivative of f is negative (because the new
        // value of alp1 is then further from the solution) or if the new
        // estimate of alp1 lies outside (0,pi); in this case, the new starting
        // guess is taken to be (alp1a + alp1b) / 2.
        numit = 0;
        // Bracketing range
        salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
        for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
          // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
          // WGS84 and random input: mean = 2.85, sd = 0.60
          nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                                salp1, calp1, slam12, clam12, numit < maxit1_,
                                C1a, C2a, C3a);
          v = nvals.lam12;
          salp2 = nvals.salp2;
          calp2 = nvals.calp2;
          sig12 = nvals.sig12;
          ssig1 = nvals.ssig1;
          csig1 = nvals.csig1;
          ssig2 = nvals.ssig2;
          csig2 = nvals.csig2;
          eps = nvals.eps;
          domg12 = nvals.domg12;
          dv = nvals.dlam12;

          // 2 * tol0 is approximately 1 ulp for a number in [0, pi].
          // Reversed test to allow escape with NaNs
          if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
            break;
          // Update bracketing values
          if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
            salp1b = salp1; calp1b = calp1;
          } else if (v < 0 &&
                     (numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
            salp1a = salp1; calp1a = calp1;
          }
          if (numit < maxit1_ && dv > 0) {
            dalp1 = -v/dv;
            sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
            nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
            if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
              calp1 = calp1 * cdalp1 - salp1 * sdalp1;
              salp1 = nsalp1;
              // norm(salp1, calp1);
              t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
              // In some regimes we don't get quadratic convergence because
              // slope -> 0.  So use convergence conditions based on epsilon
              // instead of sqrt(epsilon).
              tripn = Math.abs(v) <= 16 * tol0_;
              continue;
            }
          }
          // Either dv was not positive or updated value was outside legal
          // range.  Use the midpoint of the bracket as the next estimate.
          // This mechanism is not needed for the WGS84 ellipsoid, but it does
          // catch problems with more eccentric ellipsoids.  Its efficacy is
          // such for the WGS84 test set with the starting guess set to alp1 =
          // 90deg:
          // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
          // WGS84 and random input: mean = 4.74, sd = 0.99
          salp1 = (salp1a + salp1b)/2;
          calp1 = (calp1a + calp1b)/2;
          // norm(salp1, calp1);
          t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
          tripn = false;
          tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
                   Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
        }
        lengthmask = outmask |
            (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
             g.DISTANCE : g.NONE);
        nvals = this.Lengths(eps, sig12,
                             ssig1, csig1, dn1, ssig2, csig2, dn2,
                             cbet1, cbet2,
                             lengthmask, C1a, C2a);
        s12x = nvals.s12b;
        m12x = nvals.m12b;
        // Ignore m0
        if (outmask & g.GEODESICSCALE) {
          vals.M12 = nvals.M12;
          vals.M21 = nvals.M21;
        }
        m12x *= this._b;
        s12x *= this._b;
        vals.a12 = sig12 / m.degree;
        if (outmask & g.AREA) {
          // omg12 = lam12 - domg12
          sdomg12 = Math.sin(domg12); cdomg12 = Math.cos(domg12);
          somg12 = slam12 * cdomg12 - clam12 * sdomg12;
          comg12 = clam12 * cdomg12 + slam12 * sdomg12;
        }
      }
    }

    if (outmask & g.DISTANCE)
      vals.s12 = 0 + s12x;      // Convert -0 to 0

    if (outmask & g.REDUCEDLENGTH)
      vals.m12 = 0 + m12x;      // Convert -0 to 0

    if (outmask & g.AREA) {
      // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
      salp0 = salp1 * cbet1;
      calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
      if (calp0 !== 0 && salp0 !== 0) {
        // From Lambda12: tan(bet) = tan(sig) * cos(alp)
        ssig1 = sbet1; csig1 = calp1 * cbet1;
        ssig2 = sbet2; csig2 = calp2 * cbet2;
        k2 = m.sq(calp0) * this._ep2;
        eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
        // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
        A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
        // norm(ssig1, csig1);
        t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
        // norm(ssig2, csig2);
        t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
        C4a = new Array(g.nC4_);
        this.C4f(eps, C4a);
        B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
        B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
        vals.S12 = A4 * (B42 - B41);
      } else
        // Avoid problems with indeterminate sig1, sig2 on equator
        vals.S12 = 0;
      if (!meridian && somg12 > 1) {
        somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
      }
      if (!meridian &&
          comg12 > -0.7071 &&      // Long difference not too big
          sbet2 - sbet1 < 1.75) { // Lat difference not too big
        // Use tan(Gamma/2) = tan(omg12/2)
        // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
        // with tan(x/2) = sin(x)/(1+cos(x))
        domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
        alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
                                domg12 * (sbet1*sbet2 + dbet1*dbet2) );
      } else {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * calp1 - calp2 * salp1;
        calp12 = calp2 * calp1 + salp2 * salp1;
        // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        // salp12 = -0 and alp12 = -180.  However this depends on the sign
        // being attached to 0 correctly.  The following ensures the correct
        // behavior.
        if (salp12 === 0 && calp12 < 0) {
          salp12 = g.tiny_ * calp1;
          calp12 = -1;
        }
        alp12 = Math.atan2(salp12, calp12);
      }
      vals.S12 += this._c2 * alp12;
      vals.S12 *= swapp * lonsign * latsign;
      // Convert -0 to 0
      vals.S12 += 0;
    }

    // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
    if (swapp < 0) {
      t = salp1;
      salp1 = salp2;
      salp2 = t;
      // swap(salp1, salp2);
      t = calp1;
      calp1 = calp2;
      calp2 = t;
      // swap(calp1, calp2);
      if (outmask & g.GEODESICSCALE) {
        t = vals.M12;
        vals.M12 = vals.M21;
        vals.M21 = t;
        // swap(vals.M12, vals.M21);
      }
    }

    salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
    salp2 *= swapp * lonsign; calp2 *= swapp * latsign;

    return {vals: vals,
            salp1: salp1, calp1: calp1,
            salp2: salp2, calp2: calp2};
  };

  /**
   * @summary Solve the general direct geodesic problem.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {bool} arcmode is the next parameter an arc length?
   * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
   *   first point to the second in (arcmode ? degrees : meters).
   * @param {bitmask} [outmask = STANDARD] which results to include.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are always
   *   set; s12 is included if arcmode is false.  For details on the outmask
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  g.Geodesic.prototype.GenDirect = function(lat1, lon1, azi1,
                                            arcmode, s12_a12, outmask) {
    var line;
    if (!outmask) outmask = g.STANDARD;
    else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    // Automatically supply DISTANCE_IN if necessary
    if (!arcmode) outmask |= g.DISTANCE_IN;
    line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
    return line.GenPosition(arcmode, s12_a12, outmask);
  };

  /**
   * @summary Solve the direct geodesic problem.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {number} s12 the distance from the first point to the second in
   *   meters.
   * @param {bitmask} [outmask = STANDARD] which results to include.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  g.Geodesic.prototype.Direct = function(lat1, lon1, azi1, s12, outmask) {
    return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
  };

  /**
   * @summary Solve the direct geodesic problem with arc length.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {number} a12 the arc length from the first point to the second in
   *   degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  g.Geodesic.prototype.ArcDirect = function(lat1, lon1, azi1, a12, outmask) {
    return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
  };

  /**
   * @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   *   degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include.
   * @returns {object} the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object
   * @description For details on the caps parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  g.Geodesic.prototype.Line = function(lat1, lon1, azi1, caps) {
    return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
  };

  /**
   * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} in terms of the direct geodesic problem specified in terms
   *   of distance.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   *   degrees.
   * @param {number} s12 the distance between point 1 and point 2 (meters); it
   *   can be negative.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include.
   * @returns {object} the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object
   * @description This function sets point 3 of the GeodesicLine to correspond
   *   to point 2 of the direct geodesic problem.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  g.Geodesic.prototype.DirectLine = function(lat1, lon1, azi1, s12, caps) {
    return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
  };

  /**
   * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} in terms of the direct geodesic problem specified in terms
   *   of arc length.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   *   degrees.
   * @param {number} a12 the arc length between point 1 and point 2 (degrees);
   *   it can be negative.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include.
   * @returns {object} the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object
   * @description This function sets point 3 of the GeodesicLine to correspond
   *   to point 2 of the direct geodesic problem.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  g.Geodesic.prototype.ArcDirectLine = function(lat1, lon1, azi1, a12, caps) {
    return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
  };

  /**
   * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} in terms of the direct geodesic problem specified in terms
   *   of either distance or arc length.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   *   degrees.
   * @param {bool} arcmode boolean flag determining the meaning of the
   *   s12_a12.
   * @param {number} s12_a12 if arcmode is false, this is the distance between
   *   point 1 and point 2 (meters); otherwise it is the arc length between
   *   point 1 and point 2 (degrees); it can be negative.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include.
   * @returns {object} the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object
   * @description This function sets point 3 of the GeodesicLine to correspond
   *   to point 2 of the direct geodesic problem.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  g.Geodesic.prototype.GenDirectLine = function(lat1, lon1, azi1,
                                                arcmode, s12_a12, caps) {
    var t;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
    // Automatically supply DISTANCE_IN if necessary
    if (!arcmode) caps |= g.DISTANCE_IN;
    t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
    t.GenSetDistance(arcmode, s12_a12);
    return t;
  };

  /**
   * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} in terms of the inverse geodesic problem.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} lat2 the latitude of the second point in degrees.
   * @param {number} lon2 the longitude of the second point in degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include.
   * @returns {object} the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
   *   GeodesicLine} object
   * @description This function sets point 3 of the GeodesicLine to correspond
   *   to point 2 of the inverse geodesic problem.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  g.Geodesic.prototype.InverseLine = function(lat1, lon1, lat2, lon2, caps) {
    var r, t, azi1;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
    r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
    azi1 = m.atan2d(r.salp1, r.calp1);
    // Ensure that a12 can be converted to a distance
    if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
    t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
    t.SetArc(r.vals.a12);
    return t;
  };

  /**
   * @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
   *   PolygonArea} object.
   * @param {bool} [polyline = false] if true the new PolygonArea object
   *   describes a polyline instead of a polygon.
   * @returns {object} the
   *   {@link module:GeographicLib/PolygonArea.PolygonArea
   *   PolygonArea} object
   */
  g.Geodesic.prototype.Polygon = function(polyline) {
    return new p.PolygonArea(this, polyline);
  };

  /**
   * @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
   *   initialized for the WGS84 ellipsoid.
   * @constant {object}
   */
  g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
})(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
   GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);

/**************** GeodesicLine.js ****************/
/*
 * GeodesicLine.js
 * Transcription of GeodesicLine.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js

(function(
  g,
  /**
   * @exports GeographicLib/GeodesicLine
   * @description Solve geodesic problems on a single geodesic line via the
   *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
   *   class.
   */
  l, m) {

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {number} lat1 the initial latitude (degrees).
   * @property {number} lon1 the initial longitude (degrees).
   * @property {number} azi1 the initial azimuth (degrees).
   * @property {number} salp1 the sine of the azimuth at the first point.
   * @property {number} calp1 the cosine the azimuth at the first point.
   * @property {number} s13 the distance to point 3 (meters).
   * @property {number} a13 the arc length to point 3 (degrees).
   * @property {bitmask} caps the capabilities of the object.
   * @summary Initialize a GeodesicLine object.  For details on the caps
   *   parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   * @classdesc Performs geodesic calculations along a given geodesic line.
   *   This object is usually instantiated by
   *   {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
   *   The methods
   *   {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
   *   Geodesic.DirectLine} and
   *   {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
   *   Geodesic.InverseLine} set in addition the position of a reference point
   *   3.
   * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {number} lat1 the latitude of the first point in degrees.
   * @param {number} lon1 the longitude of the first point in degrees.
   * @param {number} azi1 the azimuth at the first point in degrees.
   * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
   *   include; LATITUDE | AZIMUTH are always included.
   */
  l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
    var t, cbet1, sbet1, eps, s, c;
    if (!caps) caps = g.STANDARD | g.DISTANCE_IN;

    this.a = geod.a;
    this.f = geod.f;
    this._b = geod._b;
    this._c2 = geod._c2;
    this._f1 = geod._f1;
    this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;

    this.lat1 = m.LatFix(lat1);
    this.lon1 = lon1;
    if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
      this.azi1 = m.AngNormalize(azi1);
      t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
    } else {
      this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
    }
    t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
    // norm(sbet1, cbet1);
    t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
    // Ensure cbet1 = +epsilon at poles
    cbet1 = Math.max(g.tiny_, cbet1);
    this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));

    // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
    // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    // is slightly better (consider the case salp1 = 0).
    this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
    // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    // sig = 0 is nearest northward crossing of equator.
    // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
    this._csig1 = this._comg1 =
      sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
    // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
    t = m.hypot(this._ssig1, this._csig1);
    this._ssig1 /= t; this._csig1 /= t;
    // norm(this._somg1, this._comg1); -- don't need to normalize!

    this._k2 = m.sq(this._calp0) * geod._ep2;
    eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);

    if (this.caps & g.CAP_C1) {
      this._A1m1 = g.A1m1f(eps);
      this._C1a = new Array(g.nC1_ + 1);
      g.C1f(eps, this._C1a);
      this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
      s = Math.sin(this._B11); c = Math.cos(this._B11);
      // tau1 = sig1 + B11
      this._stau1 = this._ssig1 * c + this._csig1 * s;
      this._ctau1 = this._csig1 * c - this._ssig1 * s;
      // Not necessary because C1pa reverts C1a
      //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
    }

    if (this.caps & g.CAP_C1p) {
      this._C1pa = new Array(g.nC1p_ + 1);
      g.C1pf(eps, this._C1pa);
    }

    if (this.caps & g.CAP_C2) {
      this._A2m1 = g.A2m1f(eps);
      this._C2a = new Array(g.nC2_ + 1);
      g.C2f(eps, this._C2a);
      this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
    }

    if (this.caps & g.CAP_C3) {
      this._C3a = new Array(g.nC3_);
      geod.C3f(eps, this._C3a);
      this._A3c = -this.f * this._salp0 * geod.A3f(eps);
      this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
    }

    if (this.caps & g.CAP_C4) {
      this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
      geod.C4f(eps, this._C4a);
      // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
      this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
    }

    this.a13 = this.s13 = Number.NaN;
  };

  /**
   * @summary Find the position on the line (general case).
   * @param {bool} arcmode is the next parameter an arc length?
   * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
   *   first point to the second in (arcmode ? degrees : meters).
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
                                                  outmask) {
    var vals = {},
        sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
        omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
        B22, AB2, J12, t, B42, salp12, calp12;
    if (!outmask) outmask = g.STANDARD;
    else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
    outmask &= this.caps & g.OUT_MASK;
    vals.lat1 = this.lat1; vals.azi1 = this.azi1;
    vals.lon1 = outmask & g.LONG_UNROLL ?
      this.lon1 : m.AngNormalize(this.lon1);
    if (arcmode)
      vals.a12 = s12_a12;
    else
      vals.s12 = s12_a12;
    if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
      // Uninitialized or impossible distance calculation requested
      vals.a12 = Number.NaN;
      return vals;
    }

    // Avoid warning about uninitialized B12.
    B12 = 0; AB1 = 0;
    if (arcmode) {
      // Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * m.degree;
      t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
    } else {
      // Interpret s12_a12 as distance
      tau12 = s12_a12 / (this._b * (1 + this._A1m1));
      s = Math.sin(tau12);
      c = Math.cos(tau12);
      // tau2 = tau1 + tau12
      B12 = -g.SinCosSeries(true,
                            this._stau1 * c + this._ctau1 * s,
                            this._ctau1 * c - this._stau1 * s,
                            this._C1pa);
      sig12 = tau12 - (B12 - this._B11);
      ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
      if (Math.abs(this.f) > 0.01) {
        // Reverted distance series is inaccurate for |f| > 1/100, so correct
        // sig12 with 1 Newton iteration.  The following table shows the
        // approximate maximum error for a = WGS_a() and various f relative to
        // GeodesicExact.
        //     erri = the error in the inverse solution (nm)
        //     errd = the error in the direct solution (series only) (nm)
        //     errda = the error in the direct solution
        //             (series + 1 Newton) (nm)
        //
        //       f     erri  errd errda
        //     -1/5    12e6 1.2e9  69e6
        //     -1/10  123e3  12e6 765e3
        //     -1/20   1110 108e3  7155
        //     -1/50  18.63 200.9 27.12
        //     -1/100 18.63 23.78 23.37
        //     -1/150 18.63 21.05 20.26
        //      1/150 22.35 24.73 25.83
        //      1/100 22.35 25.03 25.31
        //      1/50  29.80 231.9 30.44
        //      1/20   5376 146e3  10e3
        //      1/10  829e3  22e6 1.5e6
        //      1/5   157e6 3.8e9 280e6
        ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
        csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
        serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
          s12_a12 / this._b;
        sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
        ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
        // Update B12 below
      }
    }

    // sig2 = sig1 + sig12
    ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
    csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
    dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
    if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      if (arcmode || Math.abs(this.f) > 0.01)
        B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
      AB1 = (1 + this._A1m1) * (B12 - this._B11);
    }
    // sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = this._calp0 * ssig2;
    // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
    cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
    if (cbet2 === 0)
      // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = g.tiny_;
    // tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize

    if (arcmode && (outmask & g.DISTANCE))
      vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);

    if (outmask & g.LONGITUDE) {
      // tan(omg2) = sin(alp0) * tan(sig2)
      somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
      E = m.copysign(1, this._salp0);
      // omg12 = omg2 - omg1
      omg12 = outmask & g.LONG_UNROLL ?
        E * (sig12 -
             (Math.atan2(ssig2, csig2) -
              Math.atan2(this._ssig1, this._csig1)) +
             (Math.atan2(E * somg2, comg2) -
              Math.atan2(E * this._somg1, this._comg1))) :
        Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
                     comg2 * this._comg1 + somg2 * this._somg1);
      lam12 = omg12 + this._A3c *
        ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
                   this._B31));
      lon12 = lam12 / m.degree;
      vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
        m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
    }

    if (outmask & g.LATITUDE)
      vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);

    if (outmask & g.AZIMUTH)
      vals.azi2 = m.atan2d(salp2, calp2);

    if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
      B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
      AB2 = (1 + this._A2m1) * (B22 - this._B21);
      J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
      if (outmask & g.REDUCEDLENGTH)
        // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        // accurate cancellation in the case of coincident points.
        vals.m12 = this._b * ((      dn2 * (this._csig1 * ssig2) -
                               this._dn1 * (this._ssig1 * csig2)) -
                              this._csig1 * csig2 * J12);
      if (outmask & g.GEODESICSCALE) {
        t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
          (this._dn1 + dn2);
        vals.M12 = csig12 +
          (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
        vals.M21 = csig12 -
          (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
      }
    }

    if (outmask & g.AREA) {
      B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
      if (this._calp0 === 0 || this._salp0 === 0) {
        // alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * this.calp1 - calp2 * this.salp1;
        calp12 = calp2 * this.calp1 + salp2 * this.salp1;
      } else {
        // tan(alp) = tan(alp0) * sec(sig)
        // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        // If csig12 > 0, write
        //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        // else
        //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        // No need to normalize
        salp12 = this._calp0 * this._salp0 *
          (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
           ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
        calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
      }
      vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
        this._A4 * (B42 - this._B41);
    }

    if (!arcmode)
      vals.a12 = sig12 / m.degree;
    return vals;
  };

  /**
   * @summary Find the position on the line given s12.
   * @param {number} s12 the distance from the first point to the second in
   *   meters.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
   *   always set; s12 is included if arcmode is false.  For details on the
   *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
   *   parameters".
   */
  l.GeodesicLine.prototype.Position = function(s12, outmask) {
    return this.GenPosition(false, s12, outmask);
  };

  /**
   * @summary Find the position on the line given a12.
   * @param {number} a12 the arc length from the first point to the second in
   *   degrees.
   * @param {bitmask} [outmask = STANDARD] which results to include; this is
   *   subject to the capabilities of the object.
   * @returns {object} the requested results.
   * @description The lat1, lon1, azi1, and a12 fields of the result are
   *   always set.  For details on the outmask parameter, see {@tutorial
   *   2-interface}, "The outmask and caps parameters".
   */
  l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
    return this.GenPosition(true, a12, outmask);
  };

  /**
   * @summary Specify position of point 3 in terms of either distance or arc
   *   length.
   * @param {bool} arcmode boolean flag determining the meaning of the second
   *   parameter; if arcmode is false, then the GeodesicLine object must have
   *   been constructed with caps |= DISTANCE_IN.
   * @param {number} s13_a13 if arcmode is false, this is the distance from
   *   point 1 to point 3 (meters); otherwise it is the arc length from
   *   point 1 to point 3 (degrees); it can be negative.
   */
  l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
    if (arcmode)
      this.SetArc(s13_a13);
    else
      this.SetDistance(s13_a13);
  };

  /**
   * @summary Specify position of point 3 in terms distance.
   * @param {number} s13 the distance from point 1 to point 3 (meters); it
   *   can be negative.
   */
  l.GeodesicLine.prototype.SetDistance = function(s13) {
    var r;
    this.s13 = s13;
    r = this.GenPosition(false, this.s13, g.ARC);
    this.a13 = 0 + r.a12;       // the 0+ converts undefined into NaN
  };

  /**
   * @summary Specify position of point 3 in terms of arc length.
   * @param {number} a13 the arc length from point 1 to point 3 (degrees);
   *   it can be negative.
   */
  l.GeodesicLine.prototype.SetArc = function(a13) {
    var r;
    this.a13 = a13;
    r = this.GenPosition(true, this.a13, g.DISTANCE);
    this.s13 = 0 + r.s12;       // the 0+ converts undefined into NaN
  };

})(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);

/**************** PolygonArea.js ****************/
/*
 * PolygonArea.js
 * Transcription of PolygonArea.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * The algorithms are derived in
 *
 *    Charles F. F. Karney,
 *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
 *    https://doi.org/10.1007/s00190-012-0578-z
 *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

// Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js

(function(
  /**
   * @exports GeographicLib/PolygonArea
   * @description Compute the area of geodesic polygons via the
   *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
   *   class.
   */
  p, g, m, a) {

  var transit, transitdirect, AreaReduceA, AreaReduceB;
  transit = function(lon1, lon2) {
    // Return 1 or -1 if crossing prime meridian in east or west direction.
    // Otherwise return zero.
    var lon12, cross;
    // Compute lon12 the same way as Geodesic::Inverse.
    lon1 = m.AngNormalize(lon1);
    lon2 = m.AngNormalize(lon2);
    lon12 = m.AngDiff(lon1, lon2).s;
    cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
      (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
    return cross;
  };

  // an alternate version of transit to deal with longitudes in the direct
  // problem.
  transitdirect = function(lon1, lon2) {
    // We want to compute exactly
    //   int(ceil(lon2 / 360)) - int(ceil(lon1 / 360))
    // Since we only need the parity of the result we can use std::remquo but
    // this is buggy with g++ 4.8.3 and requires C++11.  So instead we do
    lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
    return ( ((lon2 <= 0 && lon2 > -360) || lon2 > 360 ? 1 : 0) -
             ((lon1 <= 0 && lon1 > -360) || lon1 > 360 ? 1 : 0) );
  };

  // Reduce Accumulator area
  AreaReduceA = function(area, area0, crossings, reverse, sign) {
    area.Remainder(area0);
    if (crossings & 1)
      area.Add( (area.Sum() < 0 ? 1 : -1) * area0/2 );
    // area is with the clockwise sense.  If !reverse convert to
    // counter-clockwise convention.
    if (!reverse)
      area.Negate();
    // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
    if (sign) {
      if (area.Sum() > area0/2)
        area.Add( -area0 );
      else if (area.Sum() <= -area0/2)
        area.Add( +area0 );
    } else {
      if (area.Sum() >= area0)
        area.Add( -area0 );
      else if (area.Sum() < 0)
        area.Add( +area0 );
    }
    return 0 + area.Sum();
  };

  // Reduce double area
  AreaReduceB = function(area, area0, crossings, reverse, sign) {
    area = m.remainder(area, area0);
    if (crossings & 1)
      area += (area < 0 ? 1 : -1) * area0/2;
    // area is with the clockwise sense.  If !reverse convert to
    // counter-clockwise convention.
    if (!reverse)
      area *= -1;
    // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
    if (sign) {
      if (area > area0/2)
        area -= area0;
      else if (area <= -area0/2)
        area += area0;
    } else {
      if (area >= area0)
        area -= area0;
      else if (area < 0)
        area += area0;
    }
    return 0 + area;
  };

  /**
   * @class
   * @property {number} a the equatorial radius (meters).
   * @property {number} f the flattening.
   * @property {bool} polyline whether the PolygonArea object describes a
   *   polyline or a polygon.
   * @property {number} num the number of vertices so far.
   * @property {number} lat the current latitude (degrees).
   * @property {number} lon the current longitude (degrees).
   * @summary Initialize a PolygonArea object.
   * @classdesc Computes the area and perimeter of a geodesic polygon.
   *   This object is usually instantiated by
   *   {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
   * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
   *   Geodesic} object.
   * @param {bool} [polyline = false] if true the new PolygonArea object
   *   describes a polyline instead of a polygon.
   */
  p.PolygonArea = function(geod, polyline) {
    this._geod = geod;
    this.a = this._geod.a;
    this.f = this._geod.f;
    this._area0 = 4 * Math.PI * geod._c2;
    this.polyline = !polyline ? false : polyline;
    this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
          (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
    if (!this.polyline)
      this._areasum = new a.Accumulator(0);
    this._perimetersum = new a.Accumulator(0);
    this.Clear();
  };

  /**
   * @summary Clear the PolygonArea object, setting the number of vertices to
   *   0.
   */
  p.PolygonArea.prototype.Clear = function() {
    this.num = 0;
    this._crossings = 0;
    if (!this.polyline)
      this._areasum.Set(0);
    this._perimetersum.Set(0);
    this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
  };

  /**
   * @summary Add the next vertex to the polygon.
   * @param {number} lat the latitude of the point (degrees).
   * @param {number} lon the longitude of the point (degrees).
   * @description This adds an edge from the current vertex to the new vertex.
   */
  p.PolygonArea.prototype.AddPoint = function(lat, lon) {
    var t;
    if (this.num === 0) {
      this._lat0 = this.lat = lat;
      this._lon0 = this.lon = lon;
    } else {
      t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
      this._perimetersum.Add(t.s12);
      if (!this.polyline) {
        this._areasum.Add(t.S12);
        this._crossings += transit(this.lon, lon);
      }
      this.lat = lat;
      this.lon = lon;
    }
    ++this.num;
  };

  /**
   * @summary Add the next edge to the polygon.
   * @param {number} azi the azimuth at the current the point (degrees).
   * @param {number} s the length of the edge (meters).
   * @description This specifies the new vertex in terms of the edge from the
   *   current vertex.
   */
  p.PolygonArea.prototype.AddEdge = function(azi, s) {
    var t;
    if (this.num) {
      t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
      this._perimetersum.Add(s);
      if (!this.polyline) {
        this._areasum.Add(t.S12);
        this._crossings += transitdirect(this.lon, t.lon2);
      }
      this.lat = t.lat2;
      this.lon = t.lon2;
    }
    ++this.num;
  };

  /**
   * @summary Compute the perimeter and area of the polygon.
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   *   area for the rest of the earth.
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description Arbitrarily complex polygons are allowed.  In the case of
   *   self-intersecting polygons the area is accumulated "algebraically",
   *   e.g., the areas of the 2 loops in a figure-8 polygon will partially
   *   cancel.  If the object is a polygon (and not a polyline), the perimeter
   *   includes the length of a final edge connecting the current point to the
   *   initial point.  If the object is a polyline, then area is nan.  More
   *   points can be added to the polygon after this call.
   */
  p.PolygonArea.prototype.Compute = function(reverse, sign) {
    var vals = {number: this.num}, t, tempsum;
    if (this.num < 2) {
      vals.perimeter = 0;
      if (!this.polyline)
        vals.area = 0;
      return vals;
    }
    if (this.polyline) {
      vals.perimeter = this._perimetersum.Sum();
      return vals;
    }
    t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
                           this._mask);
    vals.perimeter = this._perimetersum.Sum(t.s12);
    tempsum = new a.Accumulator(this._areasum);
    tempsum.Add(t.S12);
    vals.area = AreaReduceA(tempsum, this._area0,
                            this._crossings + transit(this.lon, this._lon0),
                            reverse, sign);
    return vals;
  };

  /**
   * @summary Compute the perimeter and area of the polygon with a tentative
   *   new vertex.
   * @param {number} lat the latitude of the point (degrees).
   * @param {number} lon the longitude of the point (degrees).
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   *   area for the rest of the earth.
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description A new vertex is *not* added to the polygon.
   */
  p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
    var vals = {number: this.num + 1}, t, tempsum, crossings, i;
    if (this.num === 0) {
      vals.perimeter = 0;
      if (!this.polyline)
        vals.area = 0;
      return vals;
    }
    vals.perimeter = this._perimetersum.Sum();
    tempsum = this.polyline ? 0 : this._areasum.Sum();
    crossings = this._crossings;
    for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
      t = this._geod.Inverse(
       i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
       i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
       this._mask);
      vals.perimeter += t.s12;
      if (!this.polyline) {
        tempsum += t.S12;
        crossings += transit(i === 0 ? this.lon : lon,
                               i !== 0 ? this._lon0 : lon);
      }
    }

    if (this.polyline)
      return vals;

    vals.area = AreaReduceB(tempsum, this._area0, crossings, reverse, sign);
    return vals;
  };

  /**
   * @summary Compute the perimeter and area of the polygon with a tentative
   *   new edge.
   * @param {number} azi the azimuth of the edge (degrees).
   * @param {number} s the length of the edge (meters).
   * @param {bool} reverse if true then clockwise (instead of
   *   counter-clockwise) traversal counts as a positive area.
   * @param {bool} sign if true then return a signed result for the area if the
   *   polygon is traversed in the "wrong" direction instead of returning the
   *   area for the rest of the earth.
   * @returns {object} r where r.number is the number of vertices, r.perimeter
   *   is the perimeter (meters), and r.area (only returned if polyline is
   *   false) is the area (meters<sup>2</sup>).
   * @description A new vertex is *not* added to the polygon.
   */
  p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
    var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
    if (this.num === 0)
      return vals;
    vals.perimeter = this._perimetersum.Sum() + s;
    if (this.polyline)
      return vals;

    tempsum = this._areasum.Sum();
    crossings = this._crossings;
    t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
    tempsum += t.S12;
    crossings += transitdirect(this.lon, t.lon2);
    crossings += transit(t.lon2, this._lon0);
    t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
    vals.perimeter += t.s12;
    tempsum += t.S12;

    vals.area = AreaReduceB(tempsum, this._area0, crossings, reverse, sign);
    return vals;
  };

})(GeographicLib.PolygonArea, GeographicLib.Geodesic,
   GeographicLib.Math, GeographicLib.Accumulator);

/**************** DMS.js ****************/
/*
 * DMS.js
 * Transcription of DMS.[ch]pp into JavaScript.
 *
 * See the documentation for the C++ class.  The conversion is a literal
 * conversion from C++.
 *
 * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 */

GeographicLib.DMS = {};

(function(
  /**
   * @exports GeographicLib/DMS
   * @description Decode/Encode angles expressed as degrees, minutes, and
   *   seconds.  This module defines several constants:
   *   - hemisphere indicator (returned by
   *       {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
   *       indicator (used by
   *       {@link module:GeographicLib/DMS.Encode Encode})
   *     - NONE = 0, no designator and format as plain angle;
   *     - LATITUDE = 1, a N/S designator and format as latitude;
   *     - LONGITUDE = 2, an E/W designator and format as longitude;
   *     - AZIMUTH = 3, format as azimuth;
   *   - the specification of the trailing component in
   *       {@link module:GeographicLib/DMS.Encode Encode}
   *     - DEGREE;
   *     - MINUTE;
   *     - SECOND.
   */
  d) {

  var lookup, zerofill, internalDecode, numMatch,
      hemispheres_ = "SNWE",
      signs_ = "-+",
      digits_ = "0123456789",
      dmsindicators_ = "D'\":",
      // dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
      dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
      components_ = ["degrees", "minutes", "seconds"];
  lookup = function(s, c) {
    return s.indexOf(c.toUpperCase());
  };
  zerofill = function(s, n) {
    return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
      s;
  };
  d.NONE = 0;
  d.LATITUDE = 1;
  d.LONGITUDE = 2;
  d.AZIMUTH = 3;
  d.DEGREE = 0;
  d.MINUTE = 1;
  d.SECOND = 2;

  /**
   * @summary Decode a DMS string.
   * @description The interpretation of the string is given in the
   *   documentation of the corresponding function, Decode(string&, flag&)
   *   in the {@link
   *   https://geographiclib.sourceforge.io/html/classGeographicLib_1_1DMS.html
   *   C++ DMS class}
   * @param {string} dms the string.
   * @returns {object} r where r.val is the decoded value (degrees) and r.ind
   *   is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
   * @throws an error if the string is illegal.
   */
  d.Decode = function(dms) {
    var dmsa = dms, end,
        v = 0, i = 0, mi, pi, vals,
        ind1 = d.NONE, ind2, p, pa, pb;
    dmsa = dmsa
      .replace(/\u2212/g, '-')  // U+2212 minus sign
      .replace(/\u00b0/g, 'd')  // U+00b0 degree symbol
      .replace(/\u00ba/g, 'd')  // U+00ba alt symbol
      .replace(/\u2070/g, 'd')  // U+2070 sup zero
      .replace(/\u02da/g, 'd')  // U+02da ring above
      .replace(/\u2032/g, '\'') // U+2032 prime
      .replace(/\u00b4/g, '\'') // U+00b4 acute accent
      .replace(/\u2019/g, '\'') // U+2019 right single quote
      .replace(/\u2033/g, '"')  // U+2033 double prime
      .replace(/\u201d/g, '"')  // U+201d right double quote
      .replace(/\u00a0/g, '')   // U+00a0 non-breaking space
      .replace(/\u202f/g, '')   // U+202f narrow space
      .replace(/\u2007/g, '')   // U+2007 figure space
      .replace(/''/g, '"')      // '' -> "
      .trim();

    end = dmsa.length;
    // p is pointer to the next piece that needs decoding
    for (p = 0; p < end; p = pb, ++i) {
      pa = p;
      // Skip over initial hemisphere letter (for i == 0)
      if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
        ++pa;
      // Skip over initial sign (checking for it if i == 0)
      if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
        ++pa;
      // Find next sign
      mi = dmsa.substr(pa, end - pa).indexOf('-');
      pi = dmsa.substr(pa, end - pa).indexOf('+');
      if (mi < 0) mi = end; else mi += pa;
      if (pi < 0) pi = end; else pi += pa;
      pb = Math.min(mi, pi);
      vals = internalDecode(dmsa.substr(p, pb - p));
      v += vals.val; ind2 = vals.ind;
      if (ind1 === d.NONE)
        ind1 = ind2;
      else if (!(ind2 === d.NONE || ind1 === ind2))
        throw new Error("Incompatible hemisphere specifies in " +
                        dmsa.substr(0, pb));
    }
    if (i === 0)
      throw new Error("Empty or incomplete DMS string " + dmsa);
    return {val: v, ind: ind1};
  };

  internalDecode = function(dmsa) {
    var vals = {}, errormsg = "",
        sign, beg, end, ind1, k,
        ipieces, fpieces, npiece,
        icurrent, fcurrent, ncurrent, p,
        pointseen,
        digcount, intcount,
        x;
    do {                       // Executed once (provides the ability to break)
      sign = 1;
      beg = 0; end = dmsa.length;
      ind1 = d.NONE;
      k = -1;
      if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
        ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
        sign = (k & 1) ? 1 : -1;
        ++beg;
      }
      if (end > beg &&
          (k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
        if (k >= 0) {
          if (ind1 !== d.NONE) {
            if (dmsa.charAt(beg - 1).toUpperCase() ===
                dmsa.charAt(end - 1).toUpperCase())
              errormsg = "Repeated hemisphere indicators " +
              dmsa.charAt(beg - 1) + " in " +
              dmsa.substr(beg - 1, end - beg + 1);
            else
              errormsg = "Contradictory hemisphere indicators " +
              dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
              dmsa.substr(beg - 1, end - beg + 1);
            break;
          }
          ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
          sign = (k & 1) ? 1 : -1;
          --end;
        }
      }
      if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
        if (k >= 0) {
          sign *= k ? 1 : -1;
          ++beg;
        }
      }
      if (end === beg) {
        errormsg = "Empty or incomplete DMS string " + dmsa;
        break;
      }
      ipieces = [0, 0, 0];
      fpieces = [0, 0, 0];
      npiece = 0;
      icurrent = 0;
      fcurrent = 0;
      ncurrent = 0;
      p = beg;
      pointseen = false;
      digcount = 0;
      intcount = 0;
      while (p < end) {
        x = dmsa.charAt(p++);
        if ((k = lookup(digits_, x)) >= 0) {
          ++ncurrent;
          if (digcount > 0) {
            ++digcount;         // Count of decimal digits
          } else {
            icurrent = 10 * icurrent + k;
            ++intcount;
          }
        } else if (x === '.') {
          if (pointseen) {
            errormsg = "Multiple decimal points in " +
              dmsa.substr(beg, end - beg);
            break;
          }
          pointseen = true;
          digcount = 1;
        } else if ((k = lookup(dmsindicators_, x)) >= 0) {
          if (k >= 3) {
            if (p === end) {
              errormsg = "Illegal for colon to appear at the end of " +
                dmsa.substr(beg, end - beg);
              break;
            }
            k = npiece;
          }
          if (k === npiece - 1) {
            errormsg = "Repeated " + components_[k] +
              " component in " + dmsa.substr(beg, end - beg);
            break;
          } else if (k < npiece) {
            errormsg = components_[k] + " component follows " +
              components_[npiece - 1] + " component in " +
              dmsa.substr(beg, end - beg);
            break;
          }
          if (ncurrent === 0) {
            errormsg = "Missing numbers in " + components_[k] +
              " component of " + dmsa.substr(beg, end - beg);
            break;
          }
          if (digcount > 0) {
            fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
                                              intcount + digcount));
            icurrent = 0;
          }
          ipieces[k] = icurrent;
          fpieces[k] = icurrent + fcurrent;
          if (p < end) {
            npiece = k + 1;
            icurrent = fcurrent = 0;
            ncurrent = digcount = intcount = 0;
          }
        } else if (lookup(signs_, x) >= 0) {
          errormsg = "Internal sign in DMS string " +
            dmsa.substr(beg, end - beg);
          break;
        } else {
          errormsg = "Illegal character " + x + " in DMS string " +
            dmsa.substr(beg, end - beg);
          break;
        }
      }
      if (errormsg.length)
        break;
      if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
        if (npiece >= 3) {
          errormsg = "Extra text following seconds in DMS string " +
            dmsa.substr(beg, end - beg);
          break;
        }
        if (ncurrent === 0) {
          errormsg = "Missing numbers in trailing component of " +
            dmsa.substr(beg, end - beg);
          break;
        }
        if (digcount > 0) {
          fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
                                            intcount + digcount));
          icurrent = 0;
        }
        ipieces[npiece] = icurrent;
        fpieces[npiece] = icurrent + fcurrent;
      }
      if (pointseen && digcount === 0) {
        errormsg = "Decimal point in non-terminal component of " +
          dmsa.substr(beg, end - beg);
        break;
      }
      // Note that we accept 59.999999... even though it rounds to 60.
      if (ipieces[1] >= 60 || fpieces[1] > 60) {
        errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
        break;
      }
      if (ipieces[2] >= 60 || fpieces[2] > 60) {
        errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
        break;
      }
      vals.ind = ind1;
      // Assume check on range of result is made by calling routine (which
      // might be able to offer a better diagnostic).
      vals.val = sign *
        ( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
          ( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
      return vals;
    } while (false);
    vals.val = numMatch(dmsa);
    if (vals.val === 0)
      throw new Error(errormsg);
    else
      vals.ind = d.NONE;
    return vals;
  };

  numMatch = function(s) {
    var t, sign, p0, p1;
    if (s.length < 3)
      return 0;
    t = s.toUpperCase().replace(/0+$/, "");
    sign = t.charAt(0) === '-' ? -1 : 1;
    p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
    p1 = t.length - 1;
    if (p1 + 1 < p0 + 3)
      return 0;
    // Strip off sign and trailing 0s
    t = t.substr(p0, p1 + 1 - p0); // Length at least 3
    if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
        t === "1.#R")
      return Number.NaN;
    else if (t === "INF" || t === "1.#INF")
      return sign * Number.POSITIVE_INFINITY;
    return 0;
  };

  /**
   * @summary Decode two DMS strings interpreting them as a latitude/longitude
   *   pair.
   * @param {string} stra the first string.
   * @param {string} strb the first string.
   * @param {bool} [longfirst = false] if true assume then longitude is given
   *   first (in the absence of any hemisphere indicators).
   * @returns {object} r where r.lat is the decoded latitude and r.lon is the
   *   decoded longitude (both in degrees).
   * @throws an error if the strings are illegal.
   */
  d.DecodeLatLon = function(stra, strb, longfirst) {
    var vals = {},
        valsa = d.Decode(stra),
        valsb = d.Decode(strb),
        a = valsa.val, ia = valsa.ind,
        b = valsb.val, ib = valsb.ind,
        lat, lon;
    if (!longfirst) longfirst = false;
    if (ia === d.NONE && ib === d.NONE) {
      // Default to lat, long unless longfirst
      ia = longfirst ? d.LONGITUDE : d.LATITUDE;
      ib = longfirst ? d.LATITUDE : d.LONGITUDE;
    } else if (ia === d.NONE)
      ia = d.LATITUDE + d.LONGITUDE - ib;
    else if (ib === d.NONE)
      ib = d.LATITUDE + d.LONGITUDE - ia;
    if (ia === ib)
      throw new Error("Both " + stra + " and " + strb + " interpreted as " +
                      (ia === d.LATITUDE ? "latitudes" : "longitudes"));
    lat = ia === d.LATITUDE ? a : b;
    lon = ia === d.LATITUDE ? b : a;
    if (Math.abs(lat) > 90)
      throw new Error("Latitude " + lat + " not in [-90,90]");
    vals.lat = lat;
    vals.lon = lon;
    return vals;
  };

  /**
   * @summary Decode a DMS string interpreting it as an arc length.
   * @param {string} angstr the string (this must not include a hemisphere
   *   indicator).
   * @returns {number} the arc length (degrees).
   * @throws an error if the string is illegal.
   */
  d.DecodeAngle = function(angstr) {
    var vals = d.Decode(angstr),
        ang = vals.val, ind = vals.ind;
    if (ind !== d.NONE)
      throw new Error("Arc angle " + angstr +
                      " includes a hemisphere N/E/W/S");
    return ang;
  };

  /**
   * @summary Decode a DMS string interpreting it as an azimuth.
   * @param {string} azistr the string (this may include an E/W hemisphere
   *   indicator).
   * @returns {number} the azimuth (degrees).
   * @throws an error if the string is illegal.
   */
  d.DecodeAzimuth = function(azistr) {
    var vals = d.Decode(azistr),
        azi = vals.val, ind = vals.ind;
    if (ind === d.LATITUDE)
      throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
    return azi;
  };

  /**
   * @summary Convert angle (in degrees) into a DMS string (using &deg;, ',
   *  and &quot;).
   * @param {number} angle input angle (degrees).
   * @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
   *   the trailing component of the string (this component is given as a
   *   decimal number if necessary).
   * @param {number} prec the number of digits after the decimal point for
   *   the trailing component.
   * @param {number} [ind = NONE] a formatting indicator, one of NONE,
   *   LATITUDE, LONGITUDE, AZIMUTH.
   * @returns {string} the resulting string formatted as follows:
   *   * NONE, signed result no leading zeros on degrees except in the units
   *     place, e.g., -8&deg;03'.
   *   * LATITUDE, trailing N or S hemisphere designator, no sign, pad
   *     degrees to 2 digits, e.g., 08&deg;03'S.
   *   * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
   *     degrees to 3 digits, e.g., 008&deg;03'W.
   *   * AZIMUTH, convert to the range [0, 360&deg;), no sign, pad degrees to
   *     3 digits, e.g., 351&deg;57'.
   */
  d.Encode = function(angle, trailing, prec, ind) {
    // Assume check on range of input angle has been made by calling
    // routine (which might be able to offer a better diagnostic).
    var scale = 1, i, sign,
        idegree, fdegree, f, pieces, ip, fp, s;
    if (!ind) ind = d.NONE;
    if (!isFinite(angle))
      return angle < 0 ? String("-inf") :
      (angle > 0 ? String("inf") : String("nan"));

    // 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
    // This suffices to give full real precision for numbers in [-90,90]
    prec = Math.min(15 - 2 * trailing, prec);
    for (i = 0; i < trailing; ++i)
      scale *= 60;
    for (i = 0; i < prec; ++i)
      scale *= 10;
    if (ind === d.AZIMUTH)
      angle -= Math.floor(angle/360) * 360;
    sign = angle < 0 ? -1 : 1;
    angle *= sign;

    // Break off integer part to preserve precision in manipulation of
    // fractional part.
    idegree = Math.floor(angle);
    fdegree = (angle - idegree) * scale + 0.5;
    f = Math.floor(fdegree);
    // Implement the "round ties to even" rule
    fdegree = (f === fdegree && (f & 1) === 1) ? f - 1 : f;
    fdegree /= scale;

    fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
    if (fdegree >= 1) {
      idegree += 1;
      fdegree -= 1;
    }
    pieces = [fdegree, 0, 0];
    for (i = 1; i <= trailing; ++i) {
      ip = Math.floor(pieces[i - 1]);
      fp = pieces[i - 1] - ip;
      pieces[i] = fp * 60;
      pieces[i - 1] = ip;
    }
    pieces[0] += idegree;
    s = "";
    if (ind === d.NONE && sign < 0)
      s += '-';
    switch (trailing) {
    case d.DEGREE:
      s += zerofill(pieces[0].toFixed(prec),
                    ind === d.NONE ? 0 :
                    1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
        dmsindicatorsu_.charAt(0);
      break;
    default:
      s += zerofill(pieces[0].toFixed(0),
                    ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
        dmsindicatorsu_.charAt(0);
      switch (trailing) {
      case d.MINUTE:
        s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
          dmsindicatorsu_.charAt(1);
        break;
      case d.SECOND:
        s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
        s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
          dmsindicatorsu_.charAt(2);
        break;
      default:
        break;
      }
    }
    if (ind !== d.NONE && ind !== d.AZIMUTH)
      s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
                               (sign < 0 ? 0 : 1));
    return s;
  };
})(GeographicLib.DMS);

cb(GeographicLib);

})(function(geo) {
  if (typeof module === 'object' && module.exports) {
    /******** support loading with node's require ********/
    module.exports = geo;
  } else if (typeof define === 'function' && define.amd) {
    /******** support loading with AMD ********/
    define('geographiclib', [], function() { return geo; });
  } else {
    /******** otherwise just pollute our global namespace ********/
    window.GeographicLib = geo;
  }
});