Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \b Performance: for best performance, it is recommended to use a column-major storage format
* with the Lower triangular part (the default), or, equivalently, a row-major storage format
* with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization
* step, and rank-updates can be up to 3 times slower.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
* Therefore, the strict lower part does not have to store correct values.
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
template<typename InputType>
explicit LLT(const EigenBase<InputType>& matrix)
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
* \c MatrixType is a Eigen::Ref.
*
* \sa LLT(const EigenBase&)
*/
template<typename InputType>
explicit LLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
template<typename InputType>
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the Cholesky decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<typename Scalar, int UpLo> struct llt_inplace;
template<typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::ColXpr ColXpr;
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
Index n = mat.cols();
eigen_assert(mat.rows()==n && vec.size()==n);
TempVectorType temp;
if(sigma>0)
{
// This version is based on Givens rotations.
// It is faster than the other one below, but only works for updates,
// i.e., for sigma > 0
temp = sqrt(sigma) * vec;
for(Index i=0; i<n; ++i)
{
JacobiRotation<Scalar> g;
g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
Index rs = n-i-1;
if(rs>0)
{
ColXprSegment x(mat.col(i).tail(rs));
TempVecSegment y(temp.tail(rs));
apply_rotation_in_the_plane(x, y, g);
}
}
}
else
{
temp = vec;
RealScalar beta = 1;
for(Index j=0; j<n; ++j)
{
RealScalar Ljj = numext::real(mat.coeff(j,j));
RealScalar dj = numext::abs2(Ljj);
Scalar wj = temp.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*beta + swj2;
RealScalar x = dj + swj2/beta;
if (x<=RealScalar(0))
return j;
RealScalar nLjj = sqrt(x);
mat.coeffRef(j,j) = nLjj;
beta += swj2/dj;
// Update the terms of L
Index rs = n-j-1;
if(rs)
{
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
}
}
}
return -1;
}
template<typename Scalar> struct llt_inplace<Scalar, Lower>
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 /= x;
{
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template<typename Scalar> struct llt_inplace<Scalar, Upper>
typedef typename NumTraits<Scalar>::Real RealScalar;
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
* \returns a reference to *this
*
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
template<typename InputType>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
check_template_parameters();
if (!internal::is_same_dense(m_matrix, a.derived()))
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
/** Performs a rank one update (or dowdate) of the current decomposition.
* If A = LL^* before the rank one update,
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size()==m_matrix.cols());
eigen_assert(m_isInitialized);
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
m_info = NumericalIssue;
else
m_info = Success;
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
dst = rhs;
solveInPlace(dst);
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not needed anymore.
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}