Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
* Qwt Widget Library
* Copyright (C) 1997 Josef Wilgen
* Copyright (C) 2002 Uwe Rathmann
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the Qwt License, Version 1.0
*****************************************************************************/
#include "qwt_spline.h"
#include "qwt_math.h"
#include "qwt_array.h"
class QwtSpline::PrivateData
{
public:
PrivateData():
splineType(QwtSpline::Natural)
{
}
QwtSpline::SplineType splineType;
// coefficient vectors
QwtArray<double> a;
QwtArray<double> b;
QwtArray<double> c;
// control points
#if QT_VERSION < 0x040000
QwtArray<QwtDoublePoint> points;
#else
QPolygonF points;
#endif
};
#if QT_VERSION < 0x040000
static int lookup(double x, const QwtArray<QwtDoublePoint> &values)
#else
static int lookup(double x, const QPolygonF &values)
#endif
{
#if 0
//qLowerBiund/qHigherBound ???
#endif
int i1;
const int size = (int)values.size();
if (x <= values[0].x())
i1 = 0;
else if (x >= values[size - 2].x())
i1 = size - 2;
else
{
i1 = 0;
int i2 = size - 2;
int i3 = 0;
while ( i2 - i1 > 1 )
{
i3 = i1 + ((i2 - i1) >> 1);
if (values[i3].x() > x)
i2 = i3;
else
i1 = i3;
}
}
return i1;
}
//! Constructor
QwtSpline::QwtSpline()
{
d_data = new PrivateData;
}
QwtSpline::QwtSpline(const QwtSpline& other)
{
d_data = new PrivateData(*other.d_data);
}
QwtSpline &QwtSpline::operator=( const QwtSpline &other)
{
*d_data = *other.d_data;
return *this;
}
//! Destructor
QwtSpline::~QwtSpline()
{
delete d_data;
}
void QwtSpline::setSplineType(SplineType splineType)
{
d_data->splineType = splineType;
}
QwtSpline::SplineType QwtSpline::splineType() const
{
return d_data->splineType;
}
//! Determine the function table index corresponding to a value x
/*!
\brief Calculate the spline coefficients
Depending on the value of \a periodic, this function
will determine the coefficients for a natural or a periodic
spline and store them internally.
\param x
\param y points
\param size number of points
\param periodic if true, calculate periodic spline
\return true if successful
\warning The sequence of x (but not y) values has to be strictly monotone
increasing, which means <code>x[0] < x[1] < .... < x[n-1]</code>.
If this is not the case, the function will return false
*/
#if QT_VERSION < 0x040000
bool QwtSpline::setPoints(const QwtArray<QwtDoublePoint>& points)
#else
bool QwtSpline::setPoints(const QPolygonF& points)
#endif
{
const int size = points.size();
if (size <= 2)
{
reset();
return false;
}
#if QT_VERSION < 0x040000
d_data->points = points.copy(); // Qt3: deep copy
#else
d_data->points = points;
#endif
d_data->a.resize(size-1);
d_data->b.resize(size-1);
d_data->c.resize(size-1);
bool ok;
if ( d_data->splineType == Periodic )
ok = buildPeriodicSpline(points);
else
ok = buildNaturalSpline(points);
if (!ok)
reset();
return ok;
}
/*!
Return points passed by setPoints
*/
#if QT_VERSION < 0x040000
QwtArray<QwtDoublePoint> QwtSpline::points() const
#else
QPolygonF QwtSpline::points() const
#endif
{
return d_data->points;
}
//! Free allocated memory and set size to 0
void QwtSpline::reset()
{
d_data->a.resize(0);
d_data->b.resize(0);
d_data->c.resize(0);
d_data->points.resize(0);
}
//! True if valid
bool QwtSpline::isValid() const
{
return d_data->a.size() > 0;
}
/*!
Calculate the interpolated function value corresponding
to a given argument x.
*/
double QwtSpline::value(double x) const
{
if (d_data->a.size() == 0)
return 0.0;
const int i = lookup(x, d_data->points);
const double delta = x - d_data->points[i].x();
return( ( ( ( d_data->a[i] * delta) + d_data->b[i] )
* delta + d_data->c[i] ) * delta + d_data->points[i].y() );
}
/*!
\brief Determines the coefficients for a natural spline
\return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildNaturalSpline(const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildNaturalSpline(const QPolygonF &points)
#endif
{
int i;
#if QT_VERSION < 0x040000
const QwtDoublePoint *p = points.data();
#else
const QPointF *p = points.data();
#endif
const int size = points.size();
double *a = d_data->a.data();
double *b = d_data->b.data();
double *c = d_data->c.data();
// set up tridiagonal equation system; use coefficient
// vectors as temporary buffers
QwtArray<double> h(size-1);
for (i = 0; i < size - 1; i++)
{
h[i] = p[i+1].x() - p[i].x();
if (h[i] <= 0)
return false;
}
QwtArray<double> d(size-1);
double dy1 = (p[1].y() - p[0].y()) / h[0];
for (i = 1; i < size - 1; i++)
{
b[i] = c[i] = h[i];
a[i] = 2.0 * (h[i-1] + h[i]);
const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
d[i] = 6.0 * ( dy1 - dy2);
dy1 = dy2;
}
//
// solve it
//
// L-U Factorization
for(i = 1; i < size - 2;i++)
{
c[i] /= a[i];
a[i+1] -= b[i] * c[i];
}
// forward elimination
QwtArray<double> s(size);
s[1] = d[1];
for ( i = 2; i < size - 1; i++)
s[i] = d[i] - c[i-1] * s[i-1];
// backward elimination
s[size - 2] = - s[size - 2] / a[size - 2];
for (i = size -3; i > 0; i--)
s[i] = - (s[i] + b[i] * s[i+1]) / a[i];
s[size - 1] = s[0] = 0.0;
//
// Finally, determine the spline coefficients
//
for (i = 0; i < size - 1; i++)
{
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
b[i] = 0.5 * s[i];
c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
- (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
}
return true;
}
/*!
\brief Determines the coefficients for a periodic spline
\return true if successful
*/
#if QT_VERSION < 0x040000
bool QwtSpline::buildPeriodicSpline(
const QwtArray<QwtDoublePoint> &points)
#else
bool QwtSpline::buildPeriodicSpline(const QPolygonF &points)
#endif
{
int i;
#if QT_VERSION < 0x040000
const QwtDoublePoint *p = points.data();
#else
const QPointF *p = points.data();
#endif
const int size = points.size();
double *a = d_data->a.data();
double *b = d_data->b.data();
double *c = d_data->c.data();
QwtArray<double> d(size-1);
QwtArray<double> h(size-1);
QwtArray<double> s(size);
//
// setup equation system; use coefficient
// vectors as temporary buffers
//
for (i = 0; i < size - 1; i++)
{
h[i] = p[i+1].x() - p[i].x();
if (h[i] <= 0.0)
return false;
}
const int imax = size - 2;
double htmp = h[imax];
double dy1 = (p[0].y() - p[imax].y()) / htmp;
for (i = 0; i <= imax; i++)
{
b[i] = c[i] = h[i];
a[i] = 2.0 * (htmp + h[i]);
const double dy2 = (p[i+1].y() - p[i].y()) / h[i];
d[i] = 6.0 * ( dy1 - dy2);
dy1 = dy2;
htmp = h[i];
}
//
// solve it
//
// L-U Factorization
a[0] = sqrt(a[0]);
c[0] = h[imax] / a[0];
double sum = 0;
for( i = 0; i < imax - 1; i++)
{
b[i] /= a[i];
if (i > 0)
c[i] = - c[i-1] * b[i-1] / a[i];
a[i+1] = sqrt( a[i+1] - qwtSqr(b[i]));
sum += qwtSqr(c[i]);
}
b[imax-1] = (b[imax-1] - c[imax-2] * b[imax-2]) / a[imax-1];
a[imax] = sqrt(a[imax] - qwtSqr(b[imax-1]) - sum);
// forward elimination
s[0] = d[0] / a[0];
sum = 0;
for( i = 1; i < imax; i++)
{
s[i] = (d[i] - b[i-1] * s[i-1]) / a[i];
sum += c[i-1] * s[i-1];
}
s[imax] = (d[imax] - b[imax-1] * s[imax-1] - sum) / a[imax];
// backward elimination
s[imax] = - s[imax] / a[imax];
s[imax-1] = -(s[imax-1] + b[imax-1] * s[imax]) / a[imax-1];
for (i= imax - 2; i >= 0; i--)
s[i] = - (s[i] + b[i] * s[i+1] + c[i] * s[imax]) / a[i];
//
// Finally, determine the spline coefficients
//
s[size-1] = s[0];
for ( i=0; i < size-1; i++)
{
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i]);
b[i] = 0.5 * s[i];
c[i] = ( p[i+1].y() - p[i].y() )
/ h[i] - (s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
}
return true;
}