Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/**
* \file TransverseMercator.cpp
* \brief Implementation for GeographicLib::TransverseMercator class
*
* Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*
* This implementation follows closely JHS 154, ETRS89 -
* järjestelmään liittyvät karttaprojektiot,
* tasokoordinaatistot ja karttalehtijako</a> (Map projections, plane
* coordinates, and map sheet index for ETRS89), published by JUHTA, Finnish
* Geodetic Institute, and the National Land Survey of Finland (2006).
*
* The relevant section is available as the 2008 PDF file
* http://docs.jhs-suositukset.fi/jhs-suositukset/JHS154/JHS154_liite1.pdf
*
* This is a straight transcription of the formulas in this paper with the
* following exceptions:
* - use of 6th order series instead of 4th order series. This reduces the
* error to about 5nm for the UTM range of coordinates (instead of 200nm),
* with a speed penalty of only 1%;
* - use Newton's method instead of plain iteration to solve for latitude in
* terms of isometric latitude in the Reverse method;
* - use of Horner's representation for evaluating polynomials and Clenshaw's
* method for summing trigonometric series;
* - several modifications of the formulas to improve the numerical accuracy;
* - evaluating the convergence and scale using the expression for the
* projection or its inverse.
*
* If the preprocessor variable GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER is set
* to an integer between 4 and 8, then this specifies the order of the series
* used for the forward and reverse transformations. The default value is 6.
* (The series accurate to 12th order is given in \ref tmseries.)
**********************************************************************/
#include <iostream>
#include <complex>
#include "TransverseMercator.hpp"
namespace GeographicLib {
using namespace std;
TransverseMercator::TransverseMercator(real a, real f, real k0)
: _a(a)
, _f(f)
, _k0(k0)
, _e2(_f * (2 - _f))
, _es((f < 0 ? -1 : 1) * sqrt(abs(_e2)))
, _e2m(1 - _e2)
// _c = sqrt( pow(1 + _e, 1 + _e) * pow(1 - _e, 1 - _e) ) )
// See, for example, Lee (1976), p 100.
, _c( sqrt(_e2m) * exp(Math::eatanhe(real(1), _es)) )
, _n(_f / (2 - _f))
{
if (!(Math::isfinite(_a) && _a > 0))
throw GeographicErr("Equatorial radius is not positive");
if (!(Math::isfinite(_f) && _f < 1))
throw GeographicErr("Polar semi-axis is not positive");
if (!(Math::isfinite(_k0) && _k0 > 0))
throw GeographicErr("Scale is not positive");
// Generated by Maxima on 2015-05-14 22:55:13-04:00
#if GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER/2 == 2
static const real b1coeff[] = {
// b1*(n+1), polynomial in n2 of order 2
1, 16, 64, 64,
}; // count = 4
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER/2 == 3
static const real b1coeff[] = {
// b1*(n+1), polynomial in n2 of order 3
1, 4, 64, 256, 256,
}; // count = 5
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER/2 == 4
static const real b1coeff[] = {
// b1*(n+1), polynomial in n2 of order 4
25, 64, 256, 4096, 16384, 16384,
}; // count = 6
#else
#error "Bad value for GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER"
#endif
#if GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 4
static const real alpcoeff[] = {
// alp[1]/n^1, polynomial in n of order 3
164, 225, -480, 360, 720,
// alp[2]/n^2, polynomial in n of order 2
557, -864, 390, 1440,
// alp[3]/n^3, polynomial in n of order 1
-1236, 427, 1680,
// alp[4]/n^4, polynomial in n of order 0
49561, 161280,
}; // count = 14
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 5
static const real alpcoeff[] = {
// alp[1]/n^1, polynomial in n of order 4
-635, 328, 450, -960, 720, 1440,
// alp[2]/n^2, polynomial in n of order 3
4496, 3899, -6048, 2730, 10080,
// alp[3]/n^3, polynomial in n of order 2
15061, -19776, 6832, 26880,
// alp[4]/n^4, polynomial in n of order 1
-171840, 49561, 161280,
// alp[5]/n^5, polynomial in n of order 0
34729, 80640,
}; // count = 20
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 6
static const real alpcoeff[] = {
// alp[1]/n^1, polynomial in n of order 5
31564, -66675, 34440, 47250, -100800, 75600, 151200,
// alp[2]/n^2, polynomial in n of order 4
-1983433, 863232, 748608, -1161216, 524160, 1935360,
// alp[3]/n^3, polynomial in n of order 3
670412, 406647, -533952, 184464, 725760,
// alp[4]/n^4, polynomial in n of order 2
6601661, -7732800, 2230245, 7257600,
// alp[5]/n^5, polynomial in n of order 1
-13675556, 3438171, 7983360,
// alp[6]/n^6, polynomial in n of order 0
212378941, 319334400,
}; // count = 27
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 7
static const real alpcoeff[] = {
// alp[1]/n^1, polynomial in n of order 6
1804025, 2020096, -4267200, 2204160, 3024000, -6451200, 4838400, 9676800,
// alp[2]/n^2, polynomial in n of order 5
4626384, -9917165, 4316160, 3743040, -5806080, 2620800, 9676800,
// alp[3]/n^3, polynomial in n of order 4
-67102379, 26816480, 16265880, -21358080, 7378560, 29030400,
// alp[4]/n^4, polynomial in n of order 3
155912000, 72618271, -85060800, 24532695, 79833600,
// alp[5]/n^5, polynomial in n of order 2
102508609, -109404448, 27505368, 63866880,
// alp[6]/n^6, polynomial in n of order 1
-12282192400LL, 2760926233LL, 4151347200LL,
// alp[7]/n^7, polynomial in n of order 0
1522256789, 1383782400,
}; // count = 35
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 8
static const real alpcoeff[] = {
// alp[1]/n^1, polynomial in n of order 7
-75900428, 37884525, 42422016, -89611200, 46287360, 63504000, -135475200,
101606400, 203212800,
// alp[2]/n^2, polynomial in n of order 6
148003883, 83274912, -178508970, 77690880, 67374720, -104509440,
47174400, 174182400,
// alp[3]/n^3, polynomial in n of order 5
318729724, -738126169, 294981280, 178924680, -234938880, 81164160,
319334400,
// alp[4]/n^4, polynomial in n of order 4
-40176129013LL, 14967552000LL, 6971354016LL, -8165836800LL, 2355138720LL,
7664025600LL,
// alp[5]/n^5, polynomial in n of order 3
10421654396LL, 3997835751LL, -4266773472LL, 1072709352, 2490808320LL,
// alp[6]/n^6, polynomial in n of order 2
175214326799LL, -171950693600LL, 38652967262LL, 58118860800LL,
// alp[7]/n^7, polynomial in n of order 1
-67039739596LL, 13700311101LL, 12454041600LL,
// alp[8]/n^8, polynomial in n of order 0
1424729850961LL, 743921418240LL,
}; // count = 44
#else
#error "Bad value for GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER"
#endif
#if GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 4
static const real betcoeff[] = {
// bet[1]/n^1, polynomial in n of order 3
-4, 555, -960, 720, 1440,
// bet[2]/n^2, polynomial in n of order 2
-437, 96, 30, 1440,
// bet[3]/n^3, polynomial in n of order 1
-148, 119, 3360,
// bet[4]/n^4, polynomial in n of order 0
4397, 161280,
}; // count = 14
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 5
static const real betcoeff[] = {
// bet[1]/n^1, polynomial in n of order 4
-3645, -64, 8880, -15360, 11520, 23040,
// bet[2]/n^2, polynomial in n of order 3
4416, -3059, 672, 210, 10080,
// bet[3]/n^3, polynomial in n of order 2
-627, -592, 476, 13440,
// bet[4]/n^4, polynomial in n of order 1
-3520, 4397, 161280,
// bet[5]/n^5, polynomial in n of order 0
4583, 161280,
}; // count = 20
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 6
static const real betcoeff[] = {
// bet[1]/n^1, polynomial in n of order 5
384796, -382725, -6720, 932400, -1612800, 1209600, 2419200,
// bet[2]/n^2, polynomial in n of order 4
-1118711, 1695744, -1174656, 258048, 80640, 3870720,
// bet[3]/n^3, polynomial in n of order 3
22276, -16929, -15984, 12852, 362880,
// bet[4]/n^4, polynomial in n of order 2
-830251, -158400, 197865, 7257600,
// bet[5]/n^5, polynomial in n of order 1
-435388, 453717, 15966720,
// bet[6]/n^6, polynomial in n of order 0
20648693, 638668800,
}; // count = 27
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 7
static const real betcoeff[] = {
// bet[1]/n^1, polynomial in n of order 6
-5406467, 6156736, -6123600, -107520, 14918400, -25804800, 19353600,
38707200,
// bet[2]/n^2, polynomial in n of order 5
829456, -5593555, 8478720, -5873280, 1290240, 403200, 19353600,
// bet[3]/n^3, polynomial in n of order 4
9261899, 3564160, -2708640, -2557440, 2056320, 58060800,
// bet[4]/n^4, polynomial in n of order 3
14928352, -9132761, -1742400, 2176515, 79833600,
// bet[5]/n^5, polynomial in n of order 2
-8005831, -1741552, 1814868, 63866880,
// bet[6]/n^6, polynomial in n of order 1
-261810608, 268433009, 8302694400LL,
// bet[7]/n^7, polynomial in n of order 0
219941297, 5535129600LL,
}; // count = 35
#elif GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER == 8
static const real betcoeff[] = {
// bet[1]/n^1, polynomial in n of order 7
31777436, -37845269, 43097152, -42865200, -752640, 104428800, -180633600,
135475200, 270950400,
// bet[2]/n^2, polynomial in n of order 6
24749483, 14930208, -100683990, 152616960, -105719040, 23224320, 7257600,
348364800,
// bet[3]/n^3, polynomial in n of order 5
-232468668, 101880889, 39205760, -29795040, -28131840, 22619520,
638668800,
// bet[4]/n^4, polynomial in n of order 4
324154477, 1433121792, -876745056, -167270400, 208945440, 7664025600LL,
// bet[5]/n^5, polynomial in n of order 3
457888660, -312227409, -67920528, 70779852, 2490808320LL,
// bet[6]/n^6, polynomial in n of order 2
-19841813847LL, -3665348512LL, 3758062126LL, 116237721600LL,
// bet[7]/n^7, polynomial in n of order 1
-1989295244, 1979471673, 49816166400LL,
// bet[8]/n^8, polynomial in n of order 0
191773887257LL, 3719607091200LL,
}; // count = 44
#else
#error "Bad value for GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER"
#endif
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(b1coeff) / sizeof(real) ==
maxpow_/2 + 2,
"Coefficient array size mismatch for b1");
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(alpcoeff) / sizeof(real) ==
(maxpow_ * (maxpow_ + 3))/2,
"Coefficient array size mismatch for alp");
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(betcoeff) / sizeof(real) ==
(maxpow_ * (maxpow_ + 3))/2,
"Coefficient array size mismatch for bet");
int m = maxpow_/2;
_b1 = Math::polyval(m, b1coeff, Math::sq(_n)) / (b1coeff[m + 1] * (1+_n));
// _a1 is the equivalent radius for computing the circumference of
// ellipse.
_a1 = _b1 * _a;
int o = 0;
real d = _n;
for (int l = 1; l <= maxpow_; ++l) {
m = maxpow_ - l;
_alp[l] = d * Math::polyval(m, alpcoeff + o, _n) / alpcoeff[o + m + 1];
_bet[l] = d * Math::polyval(m, betcoeff + o, _n) / betcoeff[o + m + 1];
o += m + 2;
d *= _n;
}
// Post condition: o == sizeof(alpcoeff) / sizeof(real) &&
// o == sizeof(betcoeff) / sizeof(real)
}
const TransverseMercator& TransverseMercator::UTM() {
static const TransverseMercator utm(Constants::WGS84_a(),
Constants::WGS84_f(),
Constants::UTM_k0());
return utm;
}
// Engsager and Poder (2007) use trigonometric series to convert between phi
// and phip. Here are the series...
//
// Conversion from phi to phip:
//
// phip = phi + sum(c[j] * sin(2*j*phi), j, 1, 6)
//
// c[1] = - 2 * n
// + 2/3 * n^2
// + 4/3 * n^3
// - 82/45 * n^4
// + 32/45 * n^5
// + 4642/4725 * n^6;
// c[2] = 5/3 * n^2
// - 16/15 * n^3
// - 13/9 * n^4
// + 904/315 * n^5
// - 1522/945 * n^6;
// c[3] = - 26/15 * n^3
// + 34/21 * n^4
// + 8/5 * n^5
// - 12686/2835 * n^6;
// c[4] = 1237/630 * n^4
// - 12/5 * n^5
// - 24832/14175 * n^6;
// c[5] = - 734/315 * n^5
// + 109598/31185 * n^6;
// c[6] = 444337/155925 * n^6;
//
// Conversion from phip to phi:
//
// phi = phip + sum(d[j] * sin(2*j*phip), j, 1, 6)
//
// d[1] = 2 * n
// - 2/3 * n^2
// - 2 * n^3
// + 116/45 * n^4
// + 26/45 * n^5
// - 2854/675 * n^6;
// d[2] = 7/3 * n^2
// - 8/5 * n^3
// - 227/45 * n^4
// + 2704/315 * n^5
// + 2323/945 * n^6;
// d[3] = 56/15 * n^3
// - 136/35 * n^4
// - 1262/105 * n^5
// + 73814/2835 * n^6;
// d[4] = 4279/630 * n^4
// - 332/35 * n^5
// - 399572/14175 * n^6;
// d[5] = 4174/315 * n^5
// - 144838/6237 * n^6;
// d[6] = 601676/22275 * n^6;
//
// In order to maintain sufficient relative accuracy close to the pole use
//
// S = sum(c[i]*sin(2*i*phi),i,1,6)
// taup = (tau + tan(S)) / (1 - tau * tan(S))
// In Math::taupf and Math::tauf we evaluate the forward transform explicitly
// and solve the reverse one by Newton's method.
//
// There are adapted from TransverseMercatorExact (taup and taupinv). tau =
// tan(phi), taup = sinh(psi)
void TransverseMercator::Forward(real lon0, real lat, real lon,
real& x, real& y,
real& gamma, real& k) const {
lat = Math::LatFix(lat);
lon = Math::AngDiff(lon0, lon);
// Explicitly enforce the parity
int
latsign = (lat < 0) ? -1 : 1,
lonsign = (lon < 0) ? -1 : 1;
lon *= lonsign;
lat *= latsign;
bool backside = lon > 90;
if (backside) {
if (lat == 0)
latsign = -1;
lon = 180 - lon;
}
real sphi, cphi, slam, clam;
Math::sincosd(lat, sphi, cphi);
Math::sincosd(lon, slam, clam);
// phi = latitude
// phi' = conformal latitude
// psi = isometric latitude
// tau = tan(phi)
// tau' = tan(phi')
// [xi', eta'] = Gauss-Schreiber TM coordinates
// [xi, eta] = Gauss-Krueger TM coordinates
//
// We use
// tan(phi') = sinh(psi)
// sin(phi') = tanh(psi)
// cos(phi') = sech(psi)
// denom^2 = 1-cos(phi')^2*sin(lam)^2 = 1-sech(psi)^2*sin(lam)^2
// sin(xip) = sin(phi')/denom = tanh(psi)/denom
// cos(xip) = cos(phi')*cos(lam)/denom = sech(psi)*cos(lam)/denom
// cosh(etap) = 1/denom = 1/denom
// sinh(etap) = cos(phi')*sin(lam)/denom = sech(psi)*sin(lam)/denom
real etap, xip;
if (lat != 90) {
real
tau = sphi / cphi,
taup = Math::taupf(tau, _es);
xip = atan2(taup, clam);
// Used to be
// etap = Math::atanh(sin(lam) / cosh(psi));
etap = Math::asinh(slam / Math::hypot(taup, clam));
// convergence and scale for Gauss-Schreiber TM (xip, etap) -- gamma0 =
// atan(tan(xip) * tanh(etap)) = atan(tan(lam) * sin(phi'));
// sin(phi') = tau'/sqrt(1 + tau'^2)
// Krueger p 22 (44)
gamma = Math::atan2d(slam * taup, clam * Math::hypot(real(1), taup));
// k0 = sqrt(1 - _e2 * sin(phi)^2) * (cos(phi') / cos(phi)) * cosh(etap)
// Note 1/cos(phi) = cosh(psip);
// and cos(phi') * cosh(etap) = 1/hypot(sinh(psi), cos(lam))
//
// This form has cancelling errors. This property is lost if cosh(psip)
// is replaced by 1/cos(phi), even though it's using "primary" data (phi
// instead of psip).
k = sqrt(_e2m + _e2 * Math::sq(cphi)) * Math::hypot(real(1), tau)
/ Math::hypot(taup, clam);
} else {
xip = Math::pi()/2;
etap = 0;
gamma = lon;
k = _c;
}
// {xi',eta'} is {northing,easting} for Gauss-Schreiber transverse Mercator
// (for eta' = 0, xi' = bet). {xi,eta} is {northing,easting} for transverse
// Mercator with constant scale on the central meridian (for eta = 0, xip =
// rectifying latitude). Define
//
// zeta = xi + i*eta
// zeta' = xi' + i*eta'
//
// The conversion from conformal to rectifying latitude can be expressed as
// a series in _n:
//
// zeta = zeta' + sum(h[j-1]' * sin(2 * j * zeta'), j = 1..maxpow_)
//
// where h[j]' = O(_n^j). The reversion of this series gives
//
// zeta' = zeta - sum(h[j-1] * sin(2 * j * zeta), j = 1..maxpow_)
//
// which is used in Reverse.
//
// Evaluate sums via Clenshaw method. See
// https://en.wikipedia.org/wiki/Clenshaw_algorithm
//
// Let
//
// S = sum(a[k] * phi[k](x), k = 0..n)
// phi[k+1](x) = alpha[k](x) * phi[k](x) + beta[k](x) * phi[k-1](x)
//
// Evaluate S with
//
// b[n+2] = b[n+1] = 0
// b[k] = alpha[k](x) * b[k+1] + beta[k+1](x) * b[k+2] + a[k]
// S = (a[0] + beta[1](x) * b[2]) * phi[0](x) + b[1] * phi[1](x)
//
// Here we have
//
// x = 2 * zeta'
// phi[k](x) = sin(k * x)
// alpha[k](x) = 2 * cos(x)
// beta[k](x) = -1
// [ sin(A+B) - 2*cos(B)*sin(A) + sin(A-B) = 0, A = k*x, B = x ]
// n = maxpow_
// a[k] = _alp[k]
// S = b[1] * sin(x)
//
// For the derivative we have
//
// x = 2 * zeta'
// phi[k](x) = cos(k * x)
// alpha[k](x) = 2 * cos(x)
// beta[k](x) = -1
// [ cos(A+B) - 2*cos(B)*cos(A) + cos(A-B) = 0, A = k*x, B = x ]
// a[0] = 1; a[k] = 2*k*_alp[k]
// S = (a[0] - b[2]) + b[1] * cos(x)
//
// Matrix formulation (not used here):
// phi[k](x) = [sin(k * x); k * cos(k * x)]
// alpha[k](x) = 2 * [cos(x), 0; -sin(x), cos(x)]
// beta[k](x) = -1 * [1, 0; 0, 1]
// a[k] = _alp[k] * [1, 0; 0, 1]
// b[n+2] = b[n+1] = [0, 0; 0, 0]
// b[k] = alpha[k](x) * b[k+1] + beta[k+1](x) * b[k+2] + a[k]
// N.B., for all k: b[k](1,2) = 0; b[k](1,1) = b[k](2,2)
// S = (a[0] + beta[1](x) * b[2]) * phi[0](x) + b[1] * phi[1](x)
// phi[0](x) = [0; 0]
// phi[1](x) = [sin(x); cos(x)]
real
c0 = cos(2 * xip), ch0 = cosh(2 * etap),
s0 = sin(2 * xip), sh0 = sinh(2 * etap);
complex<real> a(2 * c0 * ch0, -2 * s0 * sh0); // 2 * cos(2*zeta')
int n = maxpow_;
complex<real>
y0(n & 1 ? _alp[n] : 0), y1, // default initializer is 0+i0
z0(n & 1 ? 2*n * _alp[n] : 0), z1;
if (n & 1) --n;
while (n) {
y1 = a * y0 - y1 + _alp[n];
z1 = a * z0 - z1 + 2*n * _alp[n];
--n;
y0 = a * y1 - y0 + _alp[n];
z0 = a * z1 - z0 + 2*n * _alp[n];
--n;
}
a /= real(2); // cos(2*zeta')
z1 = real(1) - z1 + a * z0;
a = complex<real>(s0 * ch0, c0 * sh0); // sin(2*zeta')
y1 = complex<real>(xip, etap) + a * y0;
// Fold in change in convergence and scale for Gauss-Schreiber TM to
// Gauss-Krueger TM.
gamma -= Math::atan2d(z1.imag(), z1.real());
k *= _b1 * abs(z1);
real xi = y1.real(), eta = y1.imag();
y = _a1 * _k0 * (backside ? Math::pi() - xi : xi) * latsign;
x = _a1 * _k0 * eta * lonsign;
if (backside)
gamma = 180 - gamma;
gamma *= latsign * lonsign;
gamma = Math::AngNormalize(gamma);
k *= _k0;
}
void TransverseMercator::Reverse(real lon0, real x, real y,
real& lat, real& lon,
real& gamma, real& k) const {
// This undoes the steps in Forward. The wrinkles are: (1) Use of the
// reverted series to express zeta' in terms of zeta. (2) Newton's method
// to solve for phi in terms of tan(phi).
real
xi = y / (_a1 * _k0),
eta = x / (_a1 * _k0);
// Explicitly enforce the parity
int
xisign = (xi < 0) ? -1 : 1,
etasign = (eta < 0) ? -1 : 1;
xi *= xisign;
eta *= etasign;
bool backside = xi > Math::pi()/2;
if (backside)
xi = Math::pi() - xi;
real
c0 = cos(2 * xi), ch0 = cosh(2 * eta),
s0 = sin(2 * xi), sh0 = sinh(2 * eta);
complex<real> a(2 * c0 * ch0, -2 * s0 * sh0); // 2 * cos(2*zeta)
int n = maxpow_;
complex<real>
y0(n & 1 ? -_bet[n] : 0), y1, // default initializer is 0+i0
z0(n & 1 ? -2*n * _bet[n] : 0), z1;
if (n & 1) --n;
while (n) {
y1 = a * y0 - y1 - _bet[n];
z1 = a * z0 - z1 - 2*n * _bet[n];
--n;
y0 = a * y1 - y0 - _bet[n];
z0 = a * z1 - z0 - 2*n * _bet[n];
--n;
}
a /= real(2); // cos(2*zeta)
z1 = real(1) - z1 + a * z0;
a = complex<real>(s0 * ch0, c0 * sh0); // sin(2*zeta)
y1 = complex<real>(xi, eta) + a * y0;
// Convergence and scale for Gauss-Schreiber TM to Gauss-Krueger TM.
gamma = Math::atan2d(z1.imag(), z1.real());
k = _b1 / abs(z1);
// JHS 154 has
//
// phi' = asin(sin(xi') / cosh(eta')) (Krueger p 17 (25))
// lam = asin(tanh(eta') / cos(phi')
// psi = asinh(tan(phi'))
real
xip = y1.real(), etap = y1.imag(),
s = sinh(etap),
c = max(real(0), cos(xip)), // cos(pi/2) might be negative
r = Math::hypot(s, c);
if (r != 0) {
lon = Math::atan2d(s, c); // Krueger p 17 (25)
// Use Newton's method to solve for tau
real
sxip = sin(xip),
tau = Math::tauf(sxip/r, _es);
gamma += Math::atan2d(sxip * tanh(etap), c); // Krueger p 19 (31)
lat = Math::atand(tau);
// Note cos(phi') * cosh(eta') = r
k *= sqrt(_e2m + _e2 / (1 + Math::sq(tau))) *
Math::hypot(real(1), tau) * r;
} else {
lat = 90;
lon = 0;
k *= _c;
}
lat *= xisign;
if (backside)
lon = 180 - lon;
lon *= etasign;
lon = Math::AngNormalize(lon + lon0);
if (backside)
gamma = 180 - gamma;
gamma *= xisign * etasign;
gamma = Math::AngNormalize(gamma);
k *= _k0;
}
} // namespace GeographicLib