/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #ifndef OSG_VEC4D #define OSG_VEC4D 1 #include <osg/Vec3d> #include <osg/Vec4f> namespace osg { /** General purpose double quad. Uses include representation * of color coordinates. * No support yet added for double * Vec4d - is it necessary? * Need to define a non-member non-friend operator* etc. * Vec4d * double is okay */ class Vec4d { public: /** Data type of vector components.*/ typedef double value_type; /** Number of vector components. */ enum { num_components = 4 }; value_type _v[4]; /** Constructor that sets all components of the vector to zero */ Vec4d() { _v[0]=0.0; _v[1]=0.0; _v[2]=0.0; _v[3]=0.0; } Vec4d(value_type x, value_type y, value_type z, value_type w) { _v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w; } Vec4d(const Vec3d& v3,value_type w) { _v[0]=v3[0]; _v[1]=v3[1]; _v[2]=v3[2]; _v[3]=w; } inline Vec4d(const Vec4f& vec) { _v[0]=vec._v[0]; _v[1]=vec._v[1]; _v[2]=vec._v[2]; _v[3]=vec._v[3];} inline operator Vec4f() const { return Vec4f(static_cast<float>(_v[0]),static_cast<float>(_v[1]),static_cast<float>(_v[2]),static_cast<float>(_v[3]));} inline bool operator == (const Vec4d& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; } inline bool operator != (const Vec4d& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; } inline bool operator < (const Vec4d& v) const { if (_v[0]<v._v[0]) return true; else if (_v[0]>v._v[0]) return false; else if (_v[1]<v._v[1]) return true; else if (_v[1]>v._v[1]) return false; else if (_v[2]<v._v[2]) return true; else if (_v[2]>v._v[2]) return false; else return (_v[3]<v._v[3]); } inline value_type* ptr() { return _v; } inline const value_type* ptr() const { return _v; } inline void set( value_type x, value_type y, value_type z, value_type w) { _v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w; } inline value_type& operator [] (unsigned int i) { return _v[i]; } inline value_type operator [] (unsigned int i) const { return _v[i]; } inline value_type& x() { return _v[0]; } inline value_type& y() { return _v[1]; } inline value_type& z() { return _v[2]; } inline value_type& w() { return _v[3]; } inline value_type x() const { return _v[0]; } inline value_type y() const { return _v[1]; } inline value_type z() const { return _v[2]; } inline value_type w() const { return _v[3]; } inline value_type& r() { return _v[0]; } inline value_type& g() { return _v[1]; } inline value_type& b() { return _v[2]; } inline value_type& a() { return _v[3]; } inline value_type r() const { return _v[0]; } inline value_type g() const { return _v[1]; } inline value_type b() const { return _v[2]; } inline value_type a() const { return _v[3]; } inline unsigned int asABGR() const { return (unsigned int)clampTo((_v[0]*255.0),0.0,255.0)<<24 | (unsigned int)clampTo((_v[1]*255.0),0.0,255.0)<<16 | (unsigned int)clampTo((_v[2]*255.0),0.0,255.0)<<8 | (unsigned int)clampTo((_v[3]*255.0),0.0,255.0); } inline unsigned int asRGBA() const { return (unsigned int)clampTo((_v[3]*255.0),0.0,255.0)<<24 | (unsigned int)clampTo((_v[2]*255.0),0.0,255.0)<<16 | (unsigned int)clampTo((_v[1]*255.0),0.0,255.0)<<8 | (unsigned int)clampTo((_v[0]*255.0),0.0,255.0); } /** Returns true if all components have values that are not NaN. */ inline bool valid() const { return !isNaN(); } /** Returns true if at least one component has value NaN. */ inline bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]) || osg::isNaN(_v[3]); } /** Dot product. */ inline value_type operator * (const Vec4d& rhs) const { return _v[0]*rhs._v[0]+ _v[1]*rhs._v[1]+ _v[2]*rhs._v[2]+ _v[3]*rhs._v[3] ; } /** Multiply by scalar. */ inline Vec4d operator * (value_type rhs) const { return Vec4d(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs); } /** Unary multiply by scalar. */ inline Vec4d& operator *= (value_type rhs) { _v[0]*=rhs; _v[1]*=rhs; _v[2]*=rhs; _v[3]*=rhs; return *this; } /** Divide by scalar. */ inline Vec4d operator / (value_type rhs) const { return Vec4d(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs, _v[3]/rhs); } /** Unary divide by scalar. */ inline Vec4d& operator /= (value_type rhs) { _v[0]/=rhs; _v[1]/=rhs; _v[2]/=rhs; _v[3]/=rhs; return *this; } /** Binary vector add. */ inline Vec4d operator + (const Vec4d& rhs) const { return Vec4d(_v[0]+rhs._v[0], _v[1]+rhs._v[1], _v[2]+rhs._v[2], _v[3]+rhs._v[3]); } /** Unary vector add. Slightly more efficient because no temporary * intermediate object. */ inline Vec4d& operator += (const Vec4d& rhs) { _v[0] += rhs._v[0]; _v[1] += rhs._v[1]; _v[2] += rhs._v[2]; _v[3] += rhs._v[3]; return *this; } /** Binary vector subtract. */ inline Vec4d operator - (const Vec4d& rhs) const { return Vec4d(_v[0]-rhs._v[0], _v[1]-rhs._v[1], _v[2]-rhs._v[2], _v[3]-rhs._v[3] ); } /** Unary vector subtract. */ inline Vec4d& operator -= (const Vec4d& rhs) { _v[0]-=rhs._v[0]; _v[1]-=rhs._v[1]; _v[2]-=rhs._v[2]; _v[3]-=rhs._v[3]; return *this; } /** Negation operator. Returns the negative of the Vec4d. */ inline const Vec4d operator - () const { return Vec4d (-_v[0], -_v[1], -_v[2], -_v[3]); } /** Length of the vector = sqrt( vec . vec ) */ inline value_type length() const { return sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]); } /** Length squared of the vector = vec . vec */ inline value_type length2() const { return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]; } /** Normalize the vector so that it has length unity. * Returns the previous length of the vector. */ inline value_type normalize() { value_type norm = Vec4d::length(); if (norm>0.0f) { value_type inv = 1.0/norm; _v[0] *= inv; _v[1] *= inv; _v[2] *= inv; _v[3] *= inv; } return( norm ); } }; // end of class Vec4d /** Compute the dot product of a (Vec3,1.0) and a Vec4d. */ inline Vec4d::value_type operator * (const Vec3d& lhs,const Vec4d& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+rhs[3]; } /** Compute the dot product of a (Vec3,1.0) and a Vec4d. */ inline Vec4d::value_type operator * (const Vec3f& lhs,const Vec4d& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+rhs[3]; } /** Compute the dot product of a (Vec3,1.0) and a Vec4d. */ inline Vec4d::value_type operator * (const Vec3d& lhs,const Vec4f& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+rhs[3]; } /** Compute the dot product of a Vec4d and a (Vec3,1.0). */ inline Vec4d::value_type operator * (const Vec4d& lhs,const Vec3d& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+lhs[3]; } /** Compute the dot product of a Vec4d and a (Vec3,1.0). */ inline Vec4d::value_type operator * (const Vec4d& lhs,const Vec3f& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+lhs[3]; } /** Compute the dot product of a Vec4d and a (Vec3,1.0). */ inline Vec4d::value_type operator * (const Vec4f& lhs,const Vec3d& rhs) { return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+lhs[3]; } /** multiply by vector components. */ inline Vec4d componentMultiply(const Vec4d& lhs, const Vec4d& rhs) { return Vec4d(lhs[0]*rhs[0], lhs[1]*rhs[1], lhs[2]*rhs[2], lhs[3]*rhs[3]); } /** divide rhs components by rhs vector components. */ inline Vec4d componentDivide(const Vec4d& lhs, const Vec4d& rhs) { return Vec4d(lhs[0]/rhs[0], lhs[1]/rhs[1], lhs[2]/rhs[2], lhs[3]/rhs[3]); } } // end of namespace osg #endif