Newer
Older
#include "QGCLoggingCategory.h"
#define CLIPPER_SCALE 1000000
#include "geometry/MeasurementArea.h"
#include "geometry/SafeArea.h"
#include "geometry/clipper/clipper.hpp"
#include "RoutingThread.h"
#include "nemo_interface/SnakeTile.h"
GeneratorBase *creator(QObject *parent) { return new LinearGenerator(parent); }
const char *distanceKey = "TransectDistance";
const char *alphaKey = "Alpha";
const char *minLengthKey = "MinLength";
} // namespace
QGC_LOGGING_CATEGORY(LinearGeneratorLog, "LinearGeneratorLog")
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects);
const char *LinearGenerator::settingsGroup = "LinearGenerator";
const char *LinearGenerator::typeString = "LinearGenerator";
REGISTER_GENERATOR("LinearGenerator", creator)
LinearGenerator::LinearGenerator(QObject *parent)
: GeneratorBase(nullptr, parent),
_metaDataMap(FactMetaData::createMapFromJsonFile(
QStringLiteral(":/json/LinearGenerator.SettingsGroup.json"), this)),
_distance(settingsGroup, _metaDataMap[distanceKey]),
_alpha(settingsGroup, _metaDataMap[alphaKey]),
_minLength(settingsGroup, _metaDataMap[minLengthKey]),
_measurementArea(nullptr) {
init();
}
LinearGenerator::LinearGenerator(GeneratorBase::Data d, QObject *parent)
: GeneratorBase(d, parent),
_metaDataMap(FactMetaData::createMapFromJsonFile(
QStringLiteral(":/json/LinearGenerator.SettingsGroup.json"), this)),
_distance(settingsGroup, _metaDataMap[distanceKey]),
_alpha(settingsGroup, _metaDataMap[alphaKey]),
_minLength(settingsGroup, _metaDataMap[minLengthKey]),
QString LinearGenerator::editorQml() const {
return QStringLiteral("LinearGeneratorEditor.qml");
}
QString LinearGenerator::mapVisualQml() const { return QStringLiteral(""); }
QString LinearGenerator::abbreviation() const {
return QStringLiteral("L. Gen.");
}
QString LinearGenerator::type() const { return typeString; }
bool LinearGenerator::get(Generator &generator) {
if (this->_d->isCorrect()) {
// Prepare data.
auto origin = this->_d->origin();
origin.setAltitude(0);
if (!origin.isValid()) {
qCDebug(LinearGeneratorLog) << "get(): origin invalid." << origin;
}
auto measurementArea =
getGeoArea<const MeasurementArea *>(*this->_d->areaList());
if (measurementArea == nullptr) {
qCDebug(LinearGeneratorLog) << "get(): measurement area == nullptr";
return false;
}
auto geoPolygon = measurementArea->coordinateList();
for (auto &v : geoPolygon) {
if (v.isValid()) {
v.setAltitude(0);
} else {
qCDebug(LinearGeneratorLog) << "get(): measurement area invalid.";
for (const auto &w : geoPolygon) {
qCDebug(LinearGeneratorLog) << w;
}
return false;
}
}
auto pPolygon = std::make_shared<snake::FPolygon>();
snake::areaToEnu(origin, geoPolygon, *pPolygon);
// Progress and tiles.
const auto &progress = measurementArea->progress();
const auto *tiles = measurementArea->tiles();
auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
if (progress.size() == tiles->count()) {
for (int i = 0; i < tiles->count(); ++i) {
if (progress[i] == 100) {
const QObject *obj = (*tiles)[int(i)];
const auto *tile = qobject_cast<const SnakeTile *>(obj);
if (tile != nullptr) {
snake::FPolygon tileENU;
snake::areaToEnu(origin, tile->coordinateList(), tileENU);
pTiles->push_back(std::move(tileENU));
} else {
qCDebug(LinearGeneratorLog) << "get(): tile == nullptr";
return false;
}
}
}
} else {
qCDebug(LinearGeneratorLog)
<< "get(): progress.size() != tiles->count().";
return false;
}
auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
if (serviceArea == nullptr) {
qCDebug(LinearGeneratorLog) << "get(): service area == nullptr";
return false;
}
auto geoDepot = serviceArea->depot();
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
if (!geoDepot.isValid()) {
qCDebug(LinearGeneratorLog) << "get(): depot invalid." << geoDepot;
return false;
}
snake::FPoint depot;
snake::toENU(origin, geoDepot, depot);
// Fetch transect parameter.
auto distance =
snake::Length(this->_distance.rawValue().toDouble() * bu::si::meter);
auto minLength =
snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
auto alpha =
snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
generator = [depot, pPolygon, pTiles, distance, alpha,
minLength](snake::Transects &transects) -> bool {
bool value = linearTransects(*pPolygon, *pTiles, distance, alpha,
minLength, transects);
transects.insert(transects.begin(), snake::FLineString{depot});
return value;
};
return true;
} else {
qCDebug(LinearGeneratorLog) << "get(): data invalid.";
return false;
}
} else {
qCDebug(LinearGeneratorLog) << "get(): data member not set.";
return false;
}
}
bool LinearGenerator::save(QJsonObject &obj) const {
QJsonObject temp;
GeneratorBase::save(temp);
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
bool ok = false;
auto variant = _distance.rawValue();
auto val = variant.toDouble(&ok);
if (!ok) {
qCDebug(LinearGeneratorLog)
<< "save(): not able to save distance. Not a double: "
<< variant.typeName();
return false;
} else {
temp[distanceKey] = val;
}
variant = _alpha.rawValue();
val = variant.toDouble(&ok);
if (!ok) {
qCDebug(LinearGeneratorLog)
<< "save(): not able to save alpha. Not a double: "
<< variant.typeName();
return false;
} else {
temp[alphaKey] = val;
}
variant = _minLength.rawValue();
val = variant.toDouble(&ok);
if (!ok) {
qCDebug(LinearGeneratorLog)
<< "save(): not able to save minLength. Not a double: "
<< variant.typeName();
return false;
} else {
}
obj = std::move(temp);
bool LinearGenerator::load(const QJsonObject &obj, QString &errorString) {
bool returnValue = true;
{
QString e;
if (!GeneratorBase::load(obj, e)) {
returnValue = false;
errorString.append(e);
}
}
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// load distance
{
QString e;
QList<JsonHelper::KeyValidateInfo> keyInfo = {
{distanceKey, QJsonValue::Double, true},
};
if (JsonHelper::validateKeys(obj, keyInfo, e)) {
_distance.setRawValue(obj[distanceKey]);
} else {
returnValue = false;
errorString.append(e);
errorString.append("\n");
}
}
// load alpha
{
QString e;
QList<JsonHelper::KeyValidateInfo> keyInfo = {
{alphaKey, QJsonValue::Double, true},
};
if (JsonHelper::validateKeys(obj, keyInfo, e)) {
_alpha.setRawValue(obj[alphaKey]);
} else {
returnValue = false;
errorString.append(e);
errorString.append("\n");
}
}
// load distance
{
QString e;
QList<JsonHelper::KeyValidateInfo> keyInfo = {
{minLengthKey, QJsonValue::Double, true},
};
if (JsonHelper::validateKeys(obj, keyInfo, e)) {
_minLength.setRawValue(obj[minLengthKey]);
} else {
returnValue = false;
errorString.append(e);
errorString.append("\n");
}
}
return returnValue;
Fact *LinearGenerator::distance() { return &_distance; }
Fact *LinearGenerator::alpha() { return &_alpha; }
Fact *LinearGenerator::minLength() { return &_minLength; }
void LinearGenerator::init() {
connect(this->distance(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
connect(this->alpha(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
connect(this->minLength(), &Fact::rawValueChanged, this,
&GeneratorBase::generatorChanged);
connect(this, &LinearGenerator::dataChanged, this,
&LinearGenerator::onDataChanged);
onDataChanged();
setName(tr("Linear Generator"));
}
Valentin Platzgummer
committed
void LinearGenerator::onAreaListChanged() {
if (this->_d != nullptr) {
auto *measurementArea =
getGeoArea<MeasurementArea *>(*this->_d->areaList());
setMeasurementArea(measurementArea);
}
}
void LinearGenerator::onDataChanged() {
if (this->_d != nullptr) {
connect(this->_d, &AreaData::areaListChanged, this,
&LinearGenerator::onAreaListChanged);
onAreaListChanged();
}
Valentin Platzgummer
committed
void LinearGenerator::setMeasurementArea(MeasurementArea *area) {
if (_measurementArea != area) {
Valentin Platzgummer
committed
if (_measurementArea != nullptr) {
disconnect(_measurementArea, &MeasurementArea::progressChanged, this,
&GeneratorBase::generatorChanged);
Valentin Platzgummer
committed
disconnect(_measurementArea, &MeasurementArea::tilesChanged, this,
&GeneratorBase::generatorChanged);
Valentin Platzgummer
committed
disconnect(_measurementArea, &MeasurementArea::pathChanged, this,
&GeneratorBase::generatorChanged);
}
Valentin Platzgummer
committed
_measurementArea = area;
if (_measurementArea != nullptr) {
connect(_measurementArea, &MeasurementArea::progressChanged, this,
&GeneratorBase::generatorChanged);
connect(_measurementArea, &MeasurementArea::tilesChanged, this,
&GeneratorBase::generatorChanged);
connect(_measurementArea, &MeasurementArea::pathChanged, this,
&GeneratorBase::generatorChanged);
}
emit generatorChanged();
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
}
}
bool linearTransects(const snake::FPolygon &polygon,
const std::vector<snake::FPolygon> &tiles,
snake::Length distance, snake::Angle angle,
snake::Length minLength, snake::Transects &transects) {
namespace tr = bg::strategy::transform;
auto s1 = std::chrono::high_resolution_clock::now();
// Check preconitions
if (polygon.outer().size() >= 3) {
// Convert to ENU system.
std::string error;
// Check validity.
if (!bg::is_valid(polygon, error)) {
std::stringstream ss;
ss << bg::wkt(polygon);
qCDebug(LinearGeneratorLog) << "linearTransects(): "
"invalid polygon. "
<< error.c_str() << ss.str().c_str();
} else {
tr::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
180 / M_PI);
// Rotate polygon by angle and calculate bounding box.
snake::FPolygon polygonENURotated;
bg::transform(polygon.outer(), polygonENURotated.outer(), rotate);
snake::FBox box;
boost::geometry::envelope(polygonENURotated, box);
double x0 = box.min_corner().get<0>();
double y0 = box.min_corner().get<1>();
double x1 = box.max_corner().get<0>();
double y1 = box.max_corner().get<1>();
// Generate transects and convert them to clipper path.
size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i = 0; i < num_t; ++i) {
// calculate transect
snake::FPoint v1{x0, y0 + i * distance.value()};
snake::FPoint v2{x1, y0 + i * distance.value()};
snake::FLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
snake::FLineString temp_transect;
tr::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
-angle.value() * 180 / M_PI);
bg::transform(transect, temp_transect, rotate_back);
// to clipper
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
temp_transect[0].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[0].get<1>() * CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
temp_transect[1].get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(
temp_transect[1].get<1>() * CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
if (transectsClipper.size() == 0) {
std::stringstream ss;
ss << "Not able to generate transects. Parameter: distance = "
<< distance << std::endl;
qCDebug(LinearGeneratorLog)
<< "linearTransects(): " << ss.str().c_str();
return false;
}
// Convert measurement area to clipper path.
snake::FPolygon shrinked;
snake::offsetPolygon(polygon, shrinked, -0.2);
auto &outer = shrinked.outer();
ClipperLib::Path polygonClipper;
for (auto vertex : outer) {
polygonClipper.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecs;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes.
if (tiles.size() > 0) {
vector<ClipperLib::Path> processedTiles;
for (const auto &tile : tiles) {
ClipperLib::Path path;
for (const auto &v : tile.outer()) {
path.push_back(ClipperLib::IntPoint{
static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
}
processedTiles.push_back(std::move(path));
}
clipper.Clear();
for (const auto &child : clippedTransecs.Childs) {
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
}
clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
clippedTransecs.Clear();
clipper.Execute(ClipperLib::ctDifference, clippedTransecs,
ClipperLib::pftNonZero, ClipperLib::pftNonZero);
}
// Extract transects from PolyTree and convert them to BoostLineString
for (const auto &child : clippedTransecs.Childs) {
const auto &clipperTransect = child->Contour;
snake::FPoint v1{
static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
snake::FPoint v2{
static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};
snake::FLineString transect{v1, v2};
if (bg::length(transect) >= minLength.value()) {
transects.push_back(transect);
}
}
if (transects.size() == 0) {
std::stringstream ss;
ss << "Not able to generatetransects. Parameter: minLength = "
<< minLength << std::endl;
qCDebug(LinearGeneratorLog)
<< "linearTransects(): " << ss.str().c_str();
return false;
}
qCDebug(LinearGeneratorLog)
<< "linearTransects(): time: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - s1)
.count()
<< " ms";
return true;
}
}
return false;
}
} // namespace routing