Newer
Older
/*=====================================================================
QGroundControl Open Source Ground Control Station
(c) 2009, 2014 QGROUNDCONTROL PROJECT <http://www.qgroundcontrol.org>
This file is part of the QGROUNDCONTROL project
QGROUNDCONTROL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
QGROUNDCONTROL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with QGROUNDCONTROL. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/// @file
/// @brief PX4 RC Calibration Widget
/// @author Don Gagne <don@thegagnes.com
#include <QMessageBox>
#include "PX4RCCalibration.h"
#include "UASManager.h"
const int PX4RCCalibration::_updateInterval = 150; ///< Interval for timer which updates radio channel widgets
const int PX4RCCalibration::_rcCalPWMCenterPoint = ((PX4RCCalibration::_rcCalPWMValidMaxValue - PX4RCCalibration::_rcCalPWMValidMinValue) / 2.0f) + PX4RCCalibration::_rcCalPWMValidMinValue;
const int PX4RCCalibration::_rcCalPWMValidMinValue = 1300; ///< Largest valid minimum PWM Min range value
const int PX4RCCalibration::_rcCalPWMValidMaxValue = 1700; ///< Smallest valid maximum PWM Max range value
const int PX4RCCalibration::_rcCalPWMDefaultMinValue = 1000; ///< Default value for Min if not set
const int PX4RCCalibration::_rcCalPWMDefaultMaxValue = 2000; ///< Default value for Max if not set
const int PX4RCCalibration::_rcCalPWMDefaultTrimValue = PX4RCCalibration::_rcCalPWMCenterPoint; ///< Default value for Trim if not set
const int PX4RCCalibration::_rcCalRoughCenterDelta = 200; ///< Delta around center point which is considered to be roughly centered
const float PX4RCCalibration::_rcCalMoveDelta = 300.0f; ///< Amount of delta which is considered stick movement
const float PX4RCCalibration::_rcCalMinDelta = 100.0f; ///< Amount of delta allowed around min value to consider channel at min
const struct PX4RCCalibration::FunctionInfo PX4RCCalibration::_rgFunctionInfo[PX4RCCalibration::rcCalFunctionMax] = {
// Name Inversion Message Parameter required
{ "Roll / Aileron", "Move stick left.", "RC_MAP_ROLL", true },
{ "Pitch / Elevator", "Move stick down.", "RC_MAP_PITCH", true },
{ "Yaw / Rudder", "Move stick left", "RC_MAP_YAW", true },
{ "Throttle", "Move stick down", "RC_MAP_THROTTLE", true },
{ "Main Mode Switch", NULL, "RC_MAP_MODE_SW", true },
{ "Posctl switch", NULL, "RC_MAP_POSCTL_SW", false },
{ "Loiter Switch", NULL, "RC_MAP_LOITER_SW", false },
{ "Return Switch", NULL, "RC_MAP_RETURN_SW", false },
{ "Flaps", NULL, "RC_MAP_FLAPS", false },
{ "Aux1", NULL, "RC_MAP_AUX1", false },
{ "Aux2", NULL, "RC_MAP_AUX2", false },
};
PX4RCCalibration::PX4RCCalibration(QWidget *parent) :
QWidget(parent),
_chanCount(0),
_rcCalState(rcCalStateChannelWait),
_mav(NULL),
_paramMgr(NULL),
_parameterListUpToDateSignalled(false),
_ui(new Ui::PX4RCCalibration)
{
_ui->setupUi(this);
// Initialize arrays of widget control pointers. This allows for more efficient code writing using "for" loops.
for (int chan=0; chan<_chanMax; chan++) {
QString radioWidgetName("radio%1Widget");
RCChannelWidget* radioWidget = findChild<RCChannelWidget*>(radioWidgetName.arg(chan+1));
radioWidget->setTitle(radioWidgetUserName.arg(chan+1));
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
_rgRadioWidget[chan] = radioWidget;
}
_setActiveUAS(UASManager::instance()->getActiveUAS());
// Connect signals
bool fSucceeded;
Q_UNUSED(fSucceeded);
fSucceeded = connect(UASManager::instance(), SIGNAL(activeUASSet(UASInterface*)), this, SLOT(_setActiveUAS(UASInterface*)));
Q_ASSERT(fSucceeded);
fSucceeded = connect(_ui->spektrumPairButton, SIGNAL(clicked(bool)), this, SLOT(_toggleSpektrumPairing(bool)));
Q_ASSERT(fSucceeded);
_updateTimer.setInterval(150);
_updateTimer.start();
fSucceeded = connect(&_updateTimer, SIGNAL(timeout()), this, SLOT(_updateView()));
Q_ASSERT(fSucceeded);
fSucceeded= connect(_ui->rcCalCancel, SIGNAL(clicked(void)), this, SLOT(_rcCalCancel(void)));
Q_ASSERT(fSucceeded);
fSucceeded= connect(_ui->rcCalSkip, SIGNAL(clicked(void)), this, SLOT(_rcCalSkip(void)));
Q_ASSERT(fSucceeded);
fSucceeded= connect(_ui->rcCalTryAgain, SIGNAL(clicked(void)), this, SLOT(_rcCalTryAgain(void)));
Q_ASSERT(fSucceeded);
fSucceeded= connect(_ui->rcCalNext, SIGNAL(clicked(void)), this, SLOT(_rcCalNext(void)));
Q_ASSERT(fSucceeded);
_rcCalChannelWait(true);
}
/// @brief Resets internal calibration values to their initial state in preparation for a new calibration sequence.
void PX4RCCalibration::_resetInternalCalibrationValues(void)
{
// Set all raw channels to not reversed and center point values
for (size_t i=0; i<_chanMax; i++) {
struct ChannelInfo* info = &_rgChannelInfo[i];
info->function = rcCalFunctionMax;
info->reversed = false;
info->rcMin = PX4RCCalibration::_rcCalPWMCenterPoint;
info->rcMax = PX4RCCalibration::_rcCalPWMCenterPoint;
info->rcTrim = PX4RCCalibration::_rcCalPWMCenterPoint;
}
// Initialize function mapping to function channel not set
for (size_t i=0; i<rcCalFunctionMax; i++) {
_rgFunctionChannelMapping[i] = _chanMax;
}
_showMinMaxOnRadioWidgets(false);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
_showTrimOnRadioWidgets(false);
}
/// @brief Resets internal calibration values to their initial state in preparation for a new calibration sequence.
void PX4RCCalibration::_setInternalCalibrationValuesFromParameters(void)
{
Q_ASSERT(_paramMgr);
if (_parameterListUpToDateSignalled) {
// Initialize all function mappings to not set
for (size_t i=0; i<_chanMax; i++) {
struct ChannelInfo* info = &_rgChannelInfo[i];
info->function = rcCalFunctionMax;
}
for (size_t i=0; i<rcCalFunctionMax; i++) {
_rgFunctionChannelMapping[i] = _chanMax;
}
// FIXME: Hardwired component id
// Pull parameters and update
QString minTpl("RC%1_MIN");
QString maxTpl("RC%1_MAX");
QString trimTpl("RC%1_TRIM");
QString revTpl("RC%1_REV");
QVariant value;
bool paramFound;
bool convertOk;
for (int i = 0; i < _chanMax; ++i) {
struct ChannelInfo* info = &_rgChannelInfo[i];
Anton Matosov
committed
paramFound = _paramMgr->getParameterValue(_paramMgr->getDefaultComponentId(), trimTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcTrim = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
Anton Matosov
committed
paramFound = _paramMgr->getParameterValue(_paramMgr->getDefaultComponentId(), minTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcMin = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
Anton Matosov
committed
paramFound = _paramMgr->getParameterValue(_paramMgr->getDefaultComponentId(), maxTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
info->rcMax = value.toInt(&convertOk);
Q_ASSERT(convertOk);
}
Anton Matosov
committed
paramFound = _paramMgr->getParameterValue(_paramMgr->getDefaultComponentId(), revTpl.arg(i+1), value);
Q_ASSERT(paramFound);
if (paramFound) {
float floatReversed = value.toFloat(&convertOk);
Q_ASSERT(convertOk);
Q_ASSERT(floatReversed == 1.0f || floatReversed == -1.0f);
info->reversed = floatReversed == -1.0f;
}
}
for (int i=0; i<rcCalFunctionMax; i++) {
int32_t paramChannel;
Anton Matosov
committed
paramFound = _paramMgr->getParameterValue(_paramMgr->getDefaultComponentId(), _rgFunctionInfo[i].parameterName, value);
Q_ASSERT(paramFound);
if (paramFound) {
paramChannel = value.toInt(&convertOk);
Q_ASSERT(convertOk);
if (paramChannel != 0) {
_rgFunctionChannelMapping[i] = paramChannel - 1;
_rgChannelInfo[paramChannel - 1].function = (enum rcCalFunctions)i;
}
}
}
_showMinMaxOnRadioWidgets(true);
_showTrimOnRadioWidgets(true);
}
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
}
/// @brief Sets a connected Spektrum receiver into bind mode
void PX4RCCalibration::_toggleSpektrumPairing(bool enabled)
{
Q_UNUSED(enabled);
if (!_ui->dsm2RadioButton->isChecked() && !_ui->dsmxRadioButton->isChecked()
&& !_ui->dsmx8RadioButton->isChecked()) {
// Reject
QMessageBox warnMsgBox;
warnMsgBox.setText(tr("Please select a Spektrum Protocol Version"));
warnMsgBox.setInformativeText(tr("Please select either DSM2 or DSM-X\ndirectly below the pair button,\nbased on the receiver type."));
warnMsgBox.setStandardButtons(QMessageBox::Ok);
warnMsgBox.setDefaultButton(QMessageBox::Ok);
(void)warnMsgBox.exec();
return;
}
UASInterface* mav = UASManager::instance()->getActiveUAS();
if (mav) {
int rxSubType;
if (_ui->dsm2RadioButton->isChecked())
rxSubType = 0;
else if (_ui->dsmxRadioButton->isChecked())
rxSubType = 1;
else // if (_ui->dsmx8RadioButton->isChecked())
rxSubType = 2;
mav->pairRX(0, rxSubType);
}
}
void PX4RCCalibration::_setActiveUAS(UASInterface* active)
{
// Disconnect old signals
if (_mav) {
disconnect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float)));
disconnect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate()));
_paramMgr = NULL;
}
_mav = active;
if (_mav) {
// Connect new signals
bool fSucceeded;
Q_UNUSED(fSucceeded);
fSucceeded = connect(_mav, SIGNAL(remoteControlChannelRawChanged(int,float)), this, SLOT(_remoteControlChannelRawChanged(int,float)));
Q_ASSERT(fSucceeded);
_paramMgr = _mav->getParamManager();
Q_ASSERT(_paramMgr);
fSucceeded = connect(_paramMgr, SIGNAL(parameterListUpToDate()), this, SLOT(_parameterListUpToDate()));
Q_ASSERT(fSucceeded);
}
setEnabled(_mav ? true : false);
}
/// @brief Validates the current settings against the calibration rules resetting values as necessary.
void PX4RCCalibration::_validateCalibration(void)
{
for (int chan = 0; chan<_chanMax; chan++) {
struct ChannelInfo* info = &_rgChannelInfo[chan];
if (chan < _chanCount) {
// Validate Min/Max values. Although the channel appears as available we still may
// not have good min/max/trim values for it. Set to defaults if needed.
if (info->rcMin > _rcCalPWMValidMinValue || info->rcMax < _rcCalPWMValidMaxValue) {
info->rcMin = _rcCalPWMDefaultMinValue;
info->rcMax = _rcCalPWMDefaultMaxValue;
info->rcTrim = _rcCalPWMDefaultTrimValue;
}
} else {
// Unavailable channels are set to defaults
info->rcMin = _rcCalPWMDefaultMinValue;
info->rcMax = _rcCalPWMDefaultMaxValue;
info->rcTrim = _rcCalPWMDefaultTrimValue;
info->reversed = false;
}
}
}
/// @brief Saves the rc calibration values to the board parameters.
/// @param trimsOnly true: write only trim values, false: write all calibration values
void PX4RCCalibration::_writeCalibration(bool trimsOnly)
{
if (!_mav) return;
_mav->endRadioControlCalibration();
QGCUASParamManagerInterface* paramMgr = _mav->getParamManager();
Q_ASSERT(paramMgr);
QString minTpl("RC%1_MIN");
QString maxTpl("RC%1_MAX");
QString trimTpl("RC%1_TRIM");
QString revTpl("RC%1_REV");
for (int chan = 0; chan<_chanMax; chan++) {
struct ChannelInfo* info = &_rgChannelInfo[chan];
int oneBasedChannel = chan + 1;
paramMgr->setPendingParam(0, trimTpl.arg(oneBasedChannel), info->rcTrim);
paramMgr->setPendingParam(0, minTpl.arg(oneBasedChannel), info->rcMin);
paramMgr->setPendingParam(0, maxTpl.arg(oneBasedChannel), info->rcMax);
paramMgr->setPendingParam(0, revTpl.arg(oneBasedChannel), info->reversed ? -1.0f : 1.0f);
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
}
}
if (!trimsOnly) {
// Write function mapping parameters
for (size_t i=0; i<rcCalFunctionMax; i++) {
int32_t paramChannel;
if (_rgFunctionChannelMapping[i] == _chanMax) {
// 0 signals no mapping
paramChannel = 0;
} else {
// Note that the channel value is 1-based
paramChannel = _rgFunctionChannelMapping[i] + 1;
}
paramMgr->setPendingParam(0, _rgFunctionInfo[i].parameterName, paramChannel);
}
}
//let the param mgr manage sending all the pending RC_foo updates and persisting after
paramMgr->sendPendingParameters(true, true);
}
/// @brief This routine is called whenever a raw value for an RC channel changes. Depending on the current
/// calibration state, it will update internal values and ui accordingly.
/// @param chan RC channel on which signal is coming from (0-based)
/// @param fval Current value for channel
void PX4RCCalibration::_remoteControlChannelRawChanged(int chan, float fval)
{
// We always update raw values
_rcRawValue[chan] = fval;
//qDebug() << "Raw value" << chan << fval;
// Update state machine
switch (_rcCalState) {
case rcCalStateChannelWait:
// While we are waiting detect the minimum number of RC channels
if (chan + 1 > (int)_chanCount) {
_chanCount = chan + 1;
if (_chanCount >= _chanMinimum) {
_ui->rcCalNext->setEnabled(true);
_ui->rcCalStatus->setText(tr("Detected %1 radio channels.").arg(_chanCount));
} else if (_chanCount < _chanMinimum) {
_ui->rcCalStatus->setText(tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum));
}
}
// Capture raw values so channel widgets are live
_rcRawValue[chan] = fval;
break;
case rcCalStateIdentify:
if (!_rcCalStateChannelComplete) {
// If this channel is already used in a mapping we can't used it again
bool channelAlreadyMapped = !(_rgChannelInfo[chan].function == rcCalFunctionMax);
// If the channel moved considerably, pick it
if (!channelAlreadyMapped && fabsf(_rcValueSave[chan] - fval) > _rcCalMoveDelta) {
Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel < rcCalFunctionMax);
_rgFunctionChannelMapping[_rcCalStateCurrentChannel] = chan;
_rgChannelInfo[chan].function = (enum rcCalFunctions)_rcCalStateCurrentChannel;
_updateView();
// Confirm found channel
QString msg = tr("Found %1 [Channel %2]").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName).arg(chan + 1);
_ui->rcCalFound->setText(msg);
//qDebug() << msg;
_ui->rcCalTryAgain->setEnabled(true);
_ui->rcCalNext->setEnabled(true);
_ui->rcCalSkip->setEnabled(false);
_rcCalStateChannelComplete =true;
}
}
break;
case rcCalStateMinMax:
if (fval < _rgChannelInfo[chan].rcMin && fval <= _rcCalPWMValidMinValue) {
_rgRadioWidget[chan]->setMinValid(true);
_rgChannelInfo[chan].rcMin = fval;
}
if (fval > _rgChannelInfo[chan].rcMax && fval >= _rcCalPWMValidMaxValue) {
_rgRadioWidget[chan]->setMaxValid(true);
_rgChannelInfo[chan].rcMax = fval;
}
break;
case rcCalStateCenterThrottle:
// If the throttle is roughly centered, enable the Next button
Q_ASSERT(_rgFunctionChannelMapping[rcCalFunctionThrottle] != _chanMax);
if (chan == _rgFunctionChannelMapping[rcCalFunctionThrottle] &&
fabsf(fval - _rcCalPWMCenterPoint) < _rcCalRoughCenterDelta) {
_ui->rcCalNext->setEnabled(true);
}
break;
case rcCalStateDetectInversion:
if (!_rcCalStateChannelComplete) {
// We only care about the channel we are looking for
Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel < rcCalFunctionMax);
if (chan == _rgFunctionChannelMapping[_rcCalStateCurrentChannel]) {
// If the channel moved considerably use it to determine inversion
//qDebug() << "Detect inversion" << chan << _rcValueSave[chan] << fval << _rcCalMoveDelta;
if (fabsf(_rcValueSave[chan] - fval) > _rcCalMoveDelta) {
// Request was made to move channel to a lower value. If value goes up the channel is reversed.
bool reversed = fval > _rcValueSave[chan];
_rgChannelInfo[chan].reversed = reversed;
_updateView();
// Confirm inversion detection
QString msg = tr("Channel for %1 ").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName);
if (reversed) {
msg += tr("is reversed.");
} else {
msg += tr("is not reversed.");
}
_ui->rcCalFound->setText(msg);
//qDebug() << msg;
_ui->rcCalTryAgain->setEnabled(true);
_ui->rcCalNext->setEnabled(true);
_ui->rcCalSkip->setEnabled(false);
_rcCalStateChannelComplete =true;
}
}
}
break;
case rcCalStateTrims:
// Update the trim values for attitude functions only
if (_rgChannelInfo[chan].function >= rcCalFunctionFirstAttitudeFunction && _rgChannelInfo[chan].function <= rcCalFunctionLastAttitudeFunction) {
int mappedChannel = _rgFunctionChannelMapping[_rgChannelInfo[chan].function];
// All Attitude Functions should be mapped
Q_ASSERT(mappedChannel != rcCalFunctionMax);
_rgChannelInfo[mappedChannel].rcTrim = _rcRawValue[mappedChannel];
}
// Once the throttle is lowered we enable the next button
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
Q_ASSERT(_rgFunctionChannelMapping[rcCalFunctionThrottle] != rcCalFunctionMax);
if (chan == _rgFunctionChannelMapping[rcCalFunctionThrottle]) {
bool enableNext = false;
// If the value is close enough to min consider the throttle to be lowered (taking into account reversing)
if ((_rgChannelInfo[chan].reversed && fabsf(_rgChannelInfo[chan].rcMax - fval) < _rcCalMinDelta) ||
fabsf(_rgChannelInfo[chan].rcMin - fval) < _rcCalMinDelta) {
enableNext = true;
}
_ui->rcCalNext->setEnabled(enableNext);
}
break;
default:
// Nothing special required for state
break;
}
}
void PX4RCCalibration::_updateView()
{
// Update the available channels
for (int chan=0; chan<_chanCount; chan++) {
_rgRadioWidget[chan]->setEnabled(true);
struct ChannelInfo* info = &_rgChannelInfo[chan];
_rgRadioWidget[chan]->setValueAndMinMax(_rcRawValue[chan], info->rcMin, info->rcMax);
_rgRadioWidget[chan]->setTrim(info->rcTrim);
}
// Disable non-available channels
for (int chan=_chanCount; chan<_chanMax; chan++) {
_rgRadioWidget[chan]->setEnabled(false);
}
// Update the channel names for all channels
for (int chan=0; chan<_chanMax; chan++) {
struct ChannelInfo* info = &_rgChannelInfo[chan];
QString name;
int oneBasedChannel = chan+1;
if (info->function == rcCalFunctionMax) {
name = tr("Channel %1").arg(oneBasedChannel);
} else {
QString label;
if (info->reversed) {
label = tr("%1 [Channel %2,Rev]");
} else {
label = tr("%1 [Channel %2]");
}
name = label.arg(_rgFunctionInfo[info->function].functionName).arg(oneBasedChannel);
}
}
/// @brief Cancels the current calibration process and returns to the Channel Wait state.
void PX4RCCalibration::_rcCalCancel(void)
{
_mav->endRadioControlCalibration();
_rcCalChannelWait(true);
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
}
void PX4RCCalibration::_rcCalSkip(void)
{
// Skip is only allowed for optional function mappings
Q_ASSERT(_rcCalState ==rcCalStateIdentify);
// This will move us to the next function mapping
_rcCalNextIdentifyChannelMapping();
}
/// @brief Resets the state machine such that you can retry an identify or inversion detection on a specific
// function.
void PX4RCCalibration::_rcCalTryAgain(void)
{
// FIXME: NYI for all states
QMessageBox::information(this, "Not Yet Implemented", "Try Again has not yet been implemented.");
}
/// @brief Called when the Next button is called from the RC Calibration tab. This will either start the calibration process
/// or move it on to the next step.
void PX4RCCalibration::_rcCalNext(void)
{
switch (_rcCalState) {
case rcCalStateChannelWait:
_rcCalBegin();
break;
case rcCalStateBegin:
_rcCalStateCurrentChannel = -1; // _rcCalNextIdentifyChannelMapping will bump up to 0 to start sequence
_rcCalNextIdentifyChannelMapping();
break;
case rcCalStateIdentify:
_rcCalNextIdentifyChannelMapping();
break;
case rcCalStateMinMax:
_updateView();
_rcCalCenterThrottle();
break;
case rcCalStateCenterThrottle:
// Setup for inversion detection channel
_rcCalStateCurrentChannel = rcCalFunctionFirstAttitudeFunction - 1; // _rcCalNextDetectChannelInversion will ++ to start sequence
_rcCalNextDetectChannelInversion();
break;
case rcCalStateDetectInversion:
_rcCalNextDetectChannelInversion();
break;
case rcCalStateTrims:
_rcCalSave();
break;
case rcCalStateSave:
_writeCalibration(false /* !trimsOnly */);
_rcCalChannelWait(false);
break;
default:
Q_ASSERT(false);
break;
}
}
/// @brief Setup for the Channel Wait state of calibration.
/// @param firstTime true: this is the first time a calibration is being performed since this widget was created
void PX4RCCalibration::_rcCalChannelWait(bool firstTime)
{
_rcCalState = rcCalStateChannelWait;
if (firstTime) {
_resetInternalCalibrationValues();
} else {
_setInternalCalibrationValuesFromParameters();
}
if (_chanCount == 0) {
_ui->rcCalFound->setText(tr("Please turn on Radio"));
_ui->rcCalNext->setEnabled(false);
} else {
if (_chanCount >= _chanMinimum) {
_ui->rcCalNext->setEnabled(true);
_ui->rcCalStatus->setText(tr("Detected %1 radio channels.").arg(_chanCount));
} else if (_chanCount < _chanMinimum) {
_ui->rcCalNext->setEnabled(false);
_ui->rcCalStatus->setText(tr("Detected %1 radio channels. To operate PX4, you need at least %2 channels.").arg(_chanCount).arg(_chanMinimum));
}
}
if (firstTime) {
_ui->rcCalFound->clear();
} else {
_ui->rcCalFound->setText(tr("Calibration complete"));
}
_ui->rcCalNext->setText(tr("Start"));
_ui->rcCalCancel->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalTryAgain->setEnabled(false);
}
/// @brief Set up for the Begin state of calibration.
void PX4RCCalibration::_rcCalBegin(void)
{
Q_ASSERT(_chanCount >= _chanMinimum);
_rcCalState = rcCalStateBegin;
// Let the mav known we are starting calibration. This should turn off motors and so forth.
// FIXME: XXX magic number: Set to 1 for radio input disable
_mav->startRadioControlCalibration(1);
_ui->rcCalNext->setText(tr("Next"));
_ui->rcCalCancel->setEnabled(true);
_ui->rcCalStatus->setText(tr("Starting RC calibration.\n\n"
"Ensure RC transmitter and receiver are powered and connected. It is recommended to disconnect all motors for additional safety, however, the system is designed to not arm during the calibration.\n\n"
"Reset all transmitter trims to center, then click Next to continue"));
}
/// @brief Saves the current channel values, so that we can detect when the use moves an input.
void PX4RCCalibration::_rcCalSaveCurrentValues(void)
{
//qDebug() << "_rcCalSaveCurrentValues";
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
for (unsigned i = 0; i < _chanMax; i++) {
_rcValueSave[i] = _rcRawValue[i];
}
}
/// @brief Set up for the Identify state of calibration which assigns channels to control functions.
void PX4RCCalibration::_rcCalNextIdentifyChannelMapping(void)
{
// Move to next channel
_rcCalStateCurrentChannel++;
Q_ASSERT(_rcCalStateCurrentChannel >= 0 && _rcCalStateCurrentChannel <= rcCalFunctionMax);
// Be careful not to switch the state until we have a valid value in _rcCalStateCurrentChannel. Otherwise an rc signal could come through
// and cause _remoteControlChannelRawChanged to get confused.
_rcCalState = rcCalStateIdentify;
_rcCalStateChannelComplete = false;
if (_rcCalStateCurrentChannel == rcCalFunctionMax) {
// If we have processed all channels move to next calibration step
_rcCalReadChannelsMinMax();
return;
}
// Save the current mapping, so we can reset if user decides to skip
_rcCalStateIdentifyOldMapping = _rgFunctionChannelMapping[_rcCalStateCurrentChannel];
// Save the current channel values so we can detect movement
_rcCalSaveCurrentValues();
_ui->rcCalStatus->setText(tr("Detecting %1 ...").arg(_rgFunctionInfo[_rcCalStateCurrentChannel].functionName));
_ui->rcCalFound->setText(tr("Please move stick, switch or potentiometer for this channel all the way up/down or left/right."));
_ui->rcCalNext->setEnabled(false);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(!_rgFunctionInfo[_rcCalStateCurrentChannel].required);
_ui->rcCalCancel->setEnabled(true);
}
/// @brief Sets up for the Min/Max state of calibration.
void PX4RCCalibration::_rcCalReadChannelsMinMax(void)
{
_rcCalState = rcCalStateMinMax;
_ui->rcCalStatus->setText(tr("Please move the sticks to their extreme positions, including all switches. Click Next when complete."));
_ui->rcCalFound->clear();
_ui->rcCalNext->setEnabled(true);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);
_showMinMaxOnRadioWidgets(true);
}
/// @brief Sets up for the Center Throttle state of Calibration which is required prior to detecting channel inversions.
void PX4RCCalibration::_rcCalCenterThrottle(void)
{
_rcCalState = rcCalStateCenterThrottle;
_ui->rcCalStatus->setText(tr("Next we will be determining which channels need to be reversed.\n\n"
"Please center the throttle stick prior to that. The stick should be roughly centered - the exact position is not relevant.\n"
"Once centered, leave it there until asked to move it.\n\n"
"Click the Next button when done. Next button will only enable when throttle is centered."));
_ui->rcCalFound->clear();
_ui->rcCalNext->setEnabled(false);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);
}
/// @brief Set up the Detect Channel Inversion state of calibration.
void PX4RCCalibration::_rcCalNextDetectChannelInversion(void)
{
// Move to next channel. We only detect inversion on Attitude control functions.
_rcCalStateCurrentChannel++;
Q_ASSERT(_rcCalStateCurrentChannel >= rcCalFunctionFirstAttitudeFunction && _rcCalStateCurrentChannel <= rcCalFunctionLastAttitudeFunction + 1);
if (_rcCalStateCurrentChannel > rcCalFunctionLastAttitudeFunction) {
// If we have processed all functions move to next calibration step
_rcCalTrims();
return;
}
// Be careful not to switch the state until we have a valid value in _rcCalStateCurrentChannel. Otherwise an rc signal could come through
// and cause _remoteControlChannelRawChanged to get confused.
_rcCalState = rcCalStateDetectInversion;
_rcCalStateChannelComplete = false;
// Save the current channel values so we can detect movement
_rcCalSaveCurrentValues();
const struct FunctionInfo* info = &_rgFunctionInfo[_rcCalStateCurrentChannel];
_ui->rcCalStatus->setText(tr("Detecting reversed channels: %1 ...").arg(info->functionName));
_ui->rcCalFound->setText(info->inversionMsg);
_ui->rcCalNext->setEnabled(false);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);
}
/// @brief Set up the Trims state of calibration.
void PX4RCCalibration::_rcCalTrims(void)
{
_rcCalState = rcCalStateTrims;
_ui->rcCalStatus->setText(tr("Next we will be determining Trim values for the two attitude control sticks:\n"
"Please set the Throttle stick to the lowest throttle position and leave it there.\n"
"Click the Next button to save Trims. Next button will only enable when throttle is lowered."));
_ui->rcCalFound->clear();
_ui->rcCalNext->setEnabled(false);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);
}
/// @brief Set up the Save state of calibration.
void PX4RCCalibration::_rcCalSave(void)
{
_rcCalState = rcCalStateSave;
_ui->rcCalStatus->setText(tr("The current calibration settings are now displayed for each channel on screen.\n\n"
"Click the Next button to upload calibration to board. Click Cancel if you don't want to save these values."));
_ui->rcCalFound->clear();
_ui->rcCalNext->setEnabled(true);
_ui->rcCalTryAgain->setEnabled(false);
_ui->rcCalSkip->setEnabled(false);
_ui->rcCalCancel->setEnabled(true);
// This updates the internal values according to the validation rules. Then _updateView will tick and update ui
// such that the settings that will be written our are displayed.
_validateCalibration();
_showMinMaxOnRadioWidgets(true);
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
}
/// @brief This is used by unit test code to force the calibration state machine to the specified state.
/// With this you can write individual unit tests for each calibration state. Should only be called by
/// unit test code.
void PX4RCCalibration::_unitTestForceCalState(enum rcCalStates state) {
switch (state) {
case rcCalStateBegin:
_rcCalBegin();
break;
case rcCalStateIdentify:
_rcCalStateCurrentChannel = -1; // _rcCalNextIdentifyChannelMapping will bump up to 0 to start sequence
_rcCalNextIdentifyChannelMapping();
break;
case rcCalStateMinMax:
_rcCalReadChannelsMinMax();
break;
case rcCalStateCenterThrottle:
_rcCalCenterThrottle();
break;
case rcCalStateDetectInversion:
_rcCalStateCurrentChannel = -1; // _rcCalNextDetectChannelInversion will bump up to 0 to start sequence
_rcCalNextDetectChannelInversion();
break;
case rcCalStateTrims:
_rcCalTrims();
break;
default:
// Unsupported force state
Q_ASSERT(false);
break;
}
}
/// @brief Shows or hides the min/max values of the channel widgets.
/// @param show true: show the min/max values, false: hide the min/max values
void PX4RCCalibration::_showMinMaxOnRadioWidgets(bool show)
{
// Force a view update to widget have current values
_updateView();
// Turn on min/max display for all radio widgets
for (int i=0; i<_chanMax; i++) {
RCChannelWidget* radioWidget = _rgRadioWidget[i];
Q_ASSERT(radioWidget);
radioWidget->showMinMax(show);
if (show) {
if (radioWidget->min() <= _rcCalPWMValidMinValue) {
radioWidget->setMinValid(true);
}
if (radioWidget->max() >= _rcCalPWMValidMaxValue) {
radioWidget->setMaxValid(true);
}
} else {
radioWidget->setMinValid(false);
radioWidget->setMaxValid(false);
}
}
/// @brief Shows or hides the trim values of the channel widgets.
/// @param show true: show the trim values, false: hide the trim values
void PX4RCCalibration::_showTrimOnRadioWidgets(bool show)
{
// Turn on trim display for all radio widgets
radioWidget->showTrim(show);
}
}
void PX4RCCalibration::_parameterListUpToDate(void)
{
_parameterListUpToDateSignalled = true;
if (_rcCalState == rcCalStateChannelWait) {
_setInternalCalibrationValuesFromParameters();