Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#include "flight_plan.h"
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 10000
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
struct FlightPlan::RoutingDataModel{
Matrix<int64_t> distanceMatrix;
long numVehicles;
RoutingIndexManager::NodeIndex depot;
};
FlightPlan::FlightPlan()
{
}
bool FlightPlan::generate(double lineDistance, double minTransectLength)
{
_waypointsENU.clear();
_waypoints.clear();
_arrivalPathIdx.clear();
_returnPathIdx.clear();
#ifndef NDEBUG
_PathVertices.clear();
#endif
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
if (!_generateTransects(lineDistance, minTransectLength))
return false;
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << endl;
cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;
#endif
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Offset joined area.
const BoostPolygon &jArea = _scenario.getJoineAreaENU();
BoostPolygon jAreaOffset;
offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);
// Create vertex list;
BoostLineString vertices;
size_t n_t = _transects.size()*2;
size_t n0 = n_t+1;
vertices.reserve(n0);
for (auto lstring : _transects){
for (auto vertex : lstring){
vertices.push_back(vertex);
}
}
vertices.push_back(_scenario.getHomePositonENU());
for (long i=0; i<long(jArea.outer().size())-1; ++i) {
vertices.push_back(jArea.outer()[i]);
}
for (auto ring : jArea.inners()) {
for (auto vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
RoutingDataModel dataModel;
Matrix<double> connectionGraph(n1, n1);
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
_generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;
#endif
// Create Routing Index Manager.
RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles,
dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
// Define Constraints.
size_t n = _transects.size()*2;
Solver *solver = routing.solver();
for (size_t i=0; i<n; i=i+2){
// auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
// auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
// auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
// auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
// auto c = solver->MakeNonEquality(cond0, cond1);
// solver->AddConstraint(c);
// alternative
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar*> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
const Assignment* solution = routing.SolveWithParameters(searchParameters);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;
#endif
if (!solution || solution->Size() <= 1){
errorString = "Not able to solve the routing problem.";
return false;
}
// Extract waypoints from solution.
long index = routing.Start(0);
std::vector<size_t> route;
route.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)){
index = solution->Value(routing.NextVar(index));
route.push_back(manager.IndexToNode(index).value());
}
// Connect transects
#ifndef NDEBUG
_PathVertices = vertices;
#endif
{
_waypointsENU.push_back(vertices[route[0]]);
vector<size_t> pathIdx;
long arrivalPathLength = 0;
for (long i=0; i<long(route.size())-1; ++i){
size_t idx0 = route[i];
size_t idx1 = route[i+1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
if ( i==0 )
arrivalPathLength = pathIdx.size();
for (size_t j=1; j<pathIdx.size(); ++j)
_waypointsENU.push_back(vertices[pathIdx[j]]);
}
long returnPathLength = pathIdx.size();
for (long i=returnPathLength; i > 0; --i)
_returnPathIdx.push_back(_waypointsENU.size()-i);
for (long i=0; i < arrivalPathLength; ++i)
_arrivalPathIdx.push_back(i);
}
// Back transform waypoints.
GeoPoint3D origin{_scenario.getOrigin()};
for (auto vertex : _waypointsENU) {
GeoPoint3D geoVertex;
fromENU(origin, Point3D{vertex.get<0>(), vertex.get<1>(), 0}, geoVertex);
_waypoints.push_back(GeoPoint2D{geoVertex[0], geoVertex[1]});
}
return true;
}
bool FlightPlan::_generateTransects(double lineDistance, double minTransectLength)
{
_transects.clear();
if (_scenario.getTilesENU().size() != _progress.size()){
ostringstream strstream;
strstream << "Number of tiles ("
<< _scenario.getTilesENU().size()
<< ") is not equal to progress array length ("
<< _progress.size()
<< ")";
errorString = strstream.str();
return false;
}
// Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
size_t num_tiles = _progress.size();
vector<BoostPolygon> processedTiles;
{
const auto &tiles = _scenario.getTilesENU();
for (size_t i=0; i<num_tiles; ++i) {
if (_progress[i] == 100){
processedTiles.push_back(tiles[i]);
}
}
if (processedTiles.size() == num_tiles)
return true;
}
// Convert measurement area and tiles to clipper path.
ClipperLib::Path mAreaClipper;
for ( auto vertex : _scenario.getMeasurementAreaENU().outer() ){
mAreaClipper.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
vector<ClipperLib::Path> processedTilesClipper;
for (auto t : processedTiles){
ClipperLib::Path path;
for (auto vertex : t.outer()){
path.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
processedTilesClipper.push_back(path);
}
const min_bbox_rt &bbox = _scenario.getMeasurementAreaBBoxENU();
double alpha = bbox.angle;
double x0 = bbox.corners.outer()[0].get<0>();
double y0 = bbox.corners.outer()[0].get<1>();
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
double delta = detail::offsetConstant;
size_t num_t = int(ceil((bboxHeight + 2*delta)/lineDistance)); // number of transects
vector<double> yCoords;
yCoords.reserve(num_t);
double y = -delta;
for (size_t i=0; i < num_t; ++i) {
yCoords.push_back(y);
y += lineDistance;
}
// Generate transects and convert them to clipper path.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-alpha*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(x0, y0);
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
for (size_t i=0; i < num_t; ++i) {
// calculate transect
BoostPoint v1{-delta, yCoords[i]};
BoostPoint v2{bboxWidth+delta, yCoords[i]};
BoostLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
BoostLineString temp_transect;
bg::transform(transect, temp_transect, rotate_back);
transect.clear();
bg::transform(temp_transect, transect, translate_back);
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(transect[0].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[0].get<1>()*CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(transect[1].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[1].get<1>()*CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
}
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecsPolyTree1;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
for (auto child : clippedTransecsPolyTree1.Childs)
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
ClipperLib::PolyTree clippedTransecsPolyTree2;
clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Extract transects from PolyTree and convert them to BoostLineString
for (auto child : clippedTransecsPolyTree2.Childs){
ClipperLib::Path clipperTransect = child->Contour;
BoostPoint v1{static_cast<double>(clipperTransect[0].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y)/CLIPPER_SCALE};
BoostPoint v2{static_cast<double>(clipperTransect[1].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y)/CLIPPER_SCALE};
BoostLineString transect{v1, v2};
if (bg::length(transect) >= minTransectLength)
_transects.push_back(transect);
}
if (_transects.size() < 1)
return false;
return true;
}
void FlightPlan::_generateRoutingModel(const BoostLineString &vertices,
const BoostPolygon &polygonOffset,
size_t n0,
FlightPlan::RoutingDataModel &dataModel,
Matrix<double> &graph)
{
#ifdef SHOW_TIME
auto start = std::chrono::high_resolution_clock::now();
#endif
graphFromPolygon(polygonOffset, vertices, graph);
#ifdef SHOW_TIME
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl;
#endif
// cout << endl;
// for (size_t i=0; i<graph.size(); ++i){
// vector<double> &row = graph[i];
// for (size_t j=0; j<row.size();++j){
// cout << "(" << i << "," << j << "):" << row[j] << " ";
// }
// cout << endl;
// }
// cout << endl;
Matrix<double> distanceMatrix(graph);
#ifdef SHOW_TIME
start = std::chrono::high_resolution_clock::now();
#endif
toDistanceMatrix(distanceMatrix);
#ifdef SHOW_TIME
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl;
#endif
dataModel.distanceMatrix.setDimension(n0, n0);
for (size_t i=0; i<n0; ++i){
dataModel.distanceMatrix.set(i, i, 0);
for (size_t j=i+1; j<n0; ++j){
dataModel.distanceMatrix.set(i, j, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
dataModel.distanceMatrix.set(j, i, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
}
}
dataModel.numVehicles = 1;
dataModel.depot = n0-1;
}