Newer
Older
/*===================================================================
======================================================================*/
/**
* @file
* @brief Represents one unmanned aerial vehicle
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#include <QList>
#include <QMessageBox>
#include <QTimer>
#include <QSettings>
#include <iostream>
#include <QDebug>
#include <cmath>
#include <qmath.h>
#include "UAS.h"
#include "LinkInterface.h"
#include "UASManager.h"
#include "QGC.h"
#include "GAudioOutput.h"
#include "MAVLinkProtocol.h"
#include "QGCMAVLink.h"
#include "LinkManager.h"
#include "SerialLink.h"
#ifdef QGC_PROTOBUF_ENABLED
#include <google/protobuf/descriptor.h>
#endif
/**
* Gets the settings from the previous UAS (name, airframe, autopilot, battery specs)
* by calling readSettings. This means the new UAS will have the same settings
* as the previous one created unless one calls deleteSettings in the code after
* creating the UAS.
UAS::UAS(MAVLinkProtocol* protocol, int id) : UASInterface(),
lipoFull(4.2f),
lipoEmpty(3.5f),
uasId(id),
links(new QList<LinkInterface*>()),
unknownPackets(),
mavlink(protocol),
commStatus(COMM_DISCONNECTED),
receiveDropRate(0),
sendDropRate(0),
statusTimeout(new QTimer(this)),
name(""),
type(MAV_TYPE_GENERIC),
airframe(QGC_AIRFRAME_GENERIC),
autopilot(-1),
systemIsArmed(false),
// custom_mode not initialized
status(-1),
// shortModeText not initialized
// shortStateText not initialized
// actuatorValues not initialized
// actuatorNames not initialized
// motorValues not initialized
// motorNames mnot initialized
thrustSum(0),
thrustMax(10),
// batteryType not initialized
// cells not initialized
// fullVoltage not initialized
// emptyVoltage not initialized
startVoltage(-1.0f),
tickVoltage(10.5f),
lastTickVoltageValue(13.0f),
tickLowpassVoltage(12.0f),
warnVoltage(9.5f),
warnLevelPercent(20.0f),
currentVoltage(12.6f),
lpVoltage(12.0f),
batteryRemainingEstimateEnabled(false),
// chargeLevel not initialized
// timeRemaining not initialized
lowBattAlarm(false),
startTime(QGC::groundTimeMilliseconds()),
onboardTimeOffset(0),
controlRollManual(true),
controlPitchManual(true),
controlYawManual(true),
controlThrustManual(true),
manualRollAngle(0),
manualPitchAngle(0),
manualYawAngle(0),
manualThrust(0),
positionLock(false),
isLocalPositionKnown(false),
isGlobalPositionKnown(false),
localX(0.0),
localY(0.0),
localZ(0.0),
Anton Babushkin
committed
latitude(0.0),
longitude(0.0),
altitudeAMSL(0.0),
altitudeRelative(0.0),
globalEstimatorActive(false),
latitude_gps(0.0),
longitude_gps(0.0),
altitude_gps(0.0),
Anton Babushkin
committed
speedX(0.0),
speedY(0.0),
speedZ(0.0),
nedPosGlobalOffset(0,0,0),
nedAttGlobalOffset(0,0,0),
#if defined(QGC_PROTOBUF_ENABLED) && defined(QGC_USE_PIXHAWK_MESSAGES)
receivedOverlayTimestamp(0.0),
receivedObstacleListTimestamp(0.0),
receivedPathTimestamp(0.0),
receivedPointCloudTimestamp(0.0),
receivedRGBDImageTimestamp(0.0),
#endif
airSpeed(std::numeric_limits<double>::quiet_NaN()),
groundSpeed(std::numeric_limits<double>::quiet_NaN()),
waypointManager(this),
attitudeKnown(false),
attitudeStamped(false),
lastAttitude(0),
roll(0.0),
pitch(0.0),
yaw(0.0),
blockHomePositionChanges(false),
receivedMode(false),
paramsOnceRequested(false),
// The protected members.
connectionLost(false),
lastVoltageWarning(0),
lastNonNullTime(0),
onboardTimeOffsetInvalidCount(0),
hilEnabled(false),
sensorHil(false),
lastSendTimeGPS(0),
{
for (unsigned int i = 0; i<255;++i)
{
componentID[i] = -1;
componentMulti[i] = false;
}
// Store a list of available actions for this UAS.
// Basically everything exposted as a SLOT with no return value or arguments.
QAction* newAction = new QAction(tr("Arm"), this);
newAction->setToolTip(tr("Enable the UAS so that all actuators are online"));
connect(newAction, SIGNAL(triggered()), this, SLOT(armSystem()));
actions.append(newAction);
newAction = new QAction(tr("Disarm"), this);
newAction->setToolTip(tr("Disable the UAS so that all actuators are offline"));
connect(newAction, SIGNAL(triggered()), this, SLOT(disarmSystem()));
actions.append(newAction);
newAction = new QAction(tr("Toggle armed"), this);
newAction->setToolTip(tr("Toggle between armed and disarmed"));
connect(newAction, SIGNAL(triggered()), this, SLOT(toggleAutonomy()));
actions.append(newAction);
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
newAction = new QAction(tr("Go home"), this);
newAction->setToolTip(tr("Command the UAS to return to its home position"));
connect(newAction, SIGNAL(triggered()), this, SLOT(home()));
actions.append(newAction);
newAction = new QAction(tr("Land"), this);
newAction->setToolTip(tr("Command the UAS to land"));
connect(newAction, SIGNAL(triggered()), this, SLOT(land()));
actions.append(newAction);
newAction = new QAction(tr("Launch"), this);
newAction->setToolTip(tr("Command the UAS to launch itself and begin its mission"));
connect(newAction, SIGNAL(triggered()), this, SLOT(launch()));
actions.append(newAction);
newAction = new QAction(tr("Resume"), this);
newAction->setToolTip(tr("Command the UAS to continue its mission"));
connect(newAction, SIGNAL(triggered()), this, SLOT(go()));
actions.append(newAction);
newAction = new QAction(tr("Stop"), this);
newAction->setToolTip(tr("Command the UAS to halt and hold position"));
connect(newAction, SIGNAL(triggered()), this, SLOT(halt()));
actions.append(newAction);
newAction = new QAction(tr("Go autonomous"), this);
newAction->setToolTip(tr("Set the UAS into an autonomous control mode"));
connect(newAction, SIGNAL(triggered()), this, SLOT(goAutonomous()));
actions.append(newAction);
newAction = new QAction(tr("Go manual"), this);
newAction->setToolTip(tr("Set the UAS into a manual control mode"));
connect(newAction, SIGNAL(triggered()), this, SLOT(goManual()));
actions.append(newAction);
newAction = new QAction(tr("Toggle autonomy"), this);
newAction->setToolTip(tr("Toggle between manual and full-autonomy"));
connect(newAction, SIGNAL(triggered()), this, SLOT(toggleAutonomy()));
actions.append(newAction);
color = UASInterface::getNextColor();
setBatterySpecs(QString(""));
connect(statusTimeout, SIGNAL(timeout()), this, SLOT(updateState()));
connect(this, SIGNAL(systemSpecsChanged(int)), this, SLOT(writeSettings()));
statusTimeout->start(500);
readSettings();
//need to init paramMgr after readSettings have been loaded, to properly set autopilot and so forth
paramMgr.initWithUAS(this);
// Initial signals
emit disarmed();
emit armingChanged(false);
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
}
/**
* Saves the settings of name, airframe, autopilot type and battery specifications
* by calling writeSettings.
*/
UAS::~UAS()
{
writeSettings();
delete links;
delete statusTimeout;
delete simulation;
}
/**
* Saves the settings of name, airframe, autopilot type and battery specifications
* for the next instantiation of UAS.
*/
void UAS::writeSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
settings.setValue("NAME", this->name);
settings.setValue("AIRFRAME", this->airframe);
settings.setValue("AP_TYPE", this->autopilot);
settings.setValue("BATTERY_SPECS", getBatterySpecs());
settings.endGroup();
settings.sync();
}
/**
* Reads in the settings: name, airframe, autopilot type, and battery specifications
* for the new UAS.
*/
void UAS::readSettings()
{
QSettings settings;
settings.beginGroup(QString("MAV%1").arg(uasId));
this->name = settings.value("NAME", this->name).toString();
this->airframe = settings.value("AIRFRAME", this->airframe).toInt();
this->autopilot = settings.value("AP_TYPE", this->autopilot).toInt();
if (settings.contains("BATTERY_SPECS"))
{
setBatterySpecs(settings.value("BATTERY_SPECS").toString());
}
settings.endGroup();
}
/**
* Deletes the settings origianally read into the UAS by readSettings.
* This is in case one does not want the old values but would rather
* start with the values assigned by the constructor.
*/
void UAS::deleteSettings()
{
this->name = "";
this->airframe = QGC_AIRFRAME_GENERIC;
this->autopilot = -1;
setBatterySpecs(QString("9V,9.5V,12.6V"));
}
/**
* @ return the id of the uas
*/
int UAS::getUASID() const
{
return uasId;
}
void UAS::triggerAction(int action)
{
if (action >= 0 && action < actions.size())
{
qDebug() << "Triggering action: '" << actions[action]->text() << "'";
actions[action]->trigger();
}
}
/**
* Update the heartbeat.
*/
void UAS::updateState()
{
// Check if heartbeat timed out
quint64 heartbeatInterval = QGC::groundTimeUsecs() - lastHeartbeat;
if (!connectionLost && (heartbeatInterval > timeoutIntervalHeartbeat))
{
connectionLost = true;
Thomas Gubler
committed
receivedMode = false;
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
QString audiostring = QString("Link lost to system %1").arg(this->getUASID());
GAudioOutput::instance()->say(audiostring.toLower());
}
// Update connection loss time on each iteration
if (connectionLost && (heartbeatInterval > timeoutIntervalHeartbeat))
{
connectionLossTime = heartbeatInterval;
emit heartbeatTimeout(true, heartbeatInterval/1000);
}
// Connection gained
if (connectionLost && (heartbeatInterval < timeoutIntervalHeartbeat))
{
QString audiostring = QString("Link regained to system %1 after %2 seconds").arg(this->getUASID()).arg((int)(connectionLossTime/1000000));
GAudioOutput::instance()->say(audiostring.toLower());
connectionLost = false;
connectionLossTime = 0;
emit heartbeatTimeout(false, 0);
}
// Position lock is set by the MAVLink message handler
// if no position lock is available, indicate an error
if (positionLock)
{
positionLock = false;
}
else
{
if (((base_mode & MAV_MODE_FLAG_DECODE_POSITION_AUTO) || (base_mode & MAV_MODE_FLAG_DECODE_POSITION_GUIDED)) && positionLock)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
{
GAudioOutput::instance()->notifyNegative();
}
}
//#define MAVLINK_OFFBOARD_CONTROL_MODE_NONE 0
//#define MAVLINK_OFFBOARD_CONTROL_MODE_RATES 1
//#define MAVLINK_OFFBOARD_CONTROL_MODE_ATTITUDE 2
//#define MAVLINK_OFFBOARD_CONTROL_MODE_VELOCITY 3
//#define MAVLINK_OFFBOARD_CONTROL_MODE_POSITION 4
//#define MAVLINK_OFFBOARD_CONTROL_FLAG_ARMED 0x10
//#warning THIS IS A HUGE HACK AND SHOULD NEVER SHOW UP IN ANY GIT REPOSITORY
// mavlink_message_t message;
// mavlink_set_quad_swarm_roll_pitch_yaw_thrust_t sp;
// sp.group = 0;
// /* set rate mode, set zero rates and 20% throttle */
// sp.mode = MAVLINK_OFFBOARD_CONTROL_MODE_RATES | MAVLINK_OFFBOARD_CONTROL_FLAG_ARMED;
// sp.roll[0] = INT16_MAX * 0.0f;
// sp.pitch[0] = INT16_MAX * 0.0f;
// sp.yaw[0] = INT16_MAX * 0.0f;
// sp.thrust[0] = UINT16_MAX * 0.3f;
// /* send from system 200 and component 0 */
// mavlink_msg_set_quad_swarm_roll_pitch_yaw_thrust_encode(200, 0, &message, &sp);
// sendMessage(message);
}
/**
* If the acitve UAS (the UAS that was selected) is not the one that is currently
* active, then change the active UAS to the one that was selected.
*/
void UAS::setSelected()
{
if (UASManager::instance()->getActiveUAS() != this)
{
UASManager::instance()->setActiveUAS(this);
emit systemSelected(true);
}
}
/**
* @return if the active UAS is the current UAS
**/
bool UAS::getSelected() const
{
return (UASManager::instance()->getActiveUAS() == this);
}
void UAS::receiveMessage(LinkInterface* link, mavlink_message_t message)
{
if (!link) return;
if (!links->contains(link))
{
addLink(link);
// qDebug() << __FILE__ << __LINE__ << "ADDED LINK!" << link->getName();
}
if (!components.contains(message.compid))
{
QString componentName;
switch (message.compid)
{
case MAV_COMP_ID_ALL:
{
componentName = "ANONYMOUS";
break;
}
case MAV_COMP_ID_IMU:
{
componentName = "IMU #1";
break;
}
case MAV_COMP_ID_CAMERA:
{
componentName = "CAMERA";
break;
}
case MAV_COMP_ID_MISSIONPLANNER:
{
componentName = "MISSIONPLANNER";
break;
}
}
components.insert(message.compid, componentName);
emit componentCreated(uasId, message.compid, componentName);
}
// qDebug() << "UAS RECEIVED from" << message.sysid << "component" << message.compid << "msg id" << message.msgid << "seq no" << message.seq;
// Only accept messages from this system (condition 1)
// and only then if a) attitudeStamped is disabled OR b) attitudeStamped is enabled
// and we already got one attitude packet
if (message.sysid == uasId && (!attitudeStamped || (attitudeStamped && (lastAttitude != 0)) || message.msgid == MAVLINK_MSG_ID_ATTITUDE))
{
QString uasState;
QString stateDescription;
bool multiComponentSourceDetected = false;
bool wrongComponent = false;
switch (message.compid)
{
case MAV_COMP_ID_IMU_2:
// Prefer IMU 2 over IMU 1 (FIXME)
componentID[message.msgid] = MAV_COMP_ID_IMU_2;
break;
default:
// Do nothing
break;
}
// Store component ID
if (componentID[message.msgid] == -1)
{
// Prefer the first component
componentID[message.msgid] = message.compid;
}
else
{
// Got this message already
if (componentID[message.msgid] != message.compid)
{
componentMulti[message.msgid] = true;
wrongComponent = true;
}
}
if (componentMulti[message.msgid] == true) multiComponentSourceDetected = true;
switch (message.msgid)
{
case MAVLINK_MSG_ID_HEARTBEAT:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
lastHeartbeat = QGC::groundTimeUsecs();
emit heartbeat(this);
mavlink_heartbeat_t state;
mavlink_msg_heartbeat_decode(&message, &state);
// Send the base_mode and system_status values to the plotter. This uses the ground time
// so the Ground Time checkbox must be ticked for these values to display
quint64 time = getUnixTime();
QString name = QString("M%1:HEARTBEAT.%2").arg(message.sysid);
emit valueChanged(uasId, name.arg("base_mode"), "bits", state.base_mode, time);
emit valueChanged(uasId, name.arg("custom_mode"), "bits", state.custom_mode, time);
emit valueChanged(uasId, name.arg("system_status"), "-", state.system_status, time);
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
// Set new type if it has changed
if (this->type != state.type)
{
this->type = state.type;
if (airframe == 0)
{
switch (type)
{
case MAV_TYPE_FIXED_WING:
setAirframe(UASInterface::QGC_AIRFRAME_EASYSTAR);
break;
case MAV_TYPE_QUADROTOR:
setAirframe(UASInterface::QGC_AIRFRAME_CHEETAH);
break;
case MAV_TYPE_HEXAROTOR:
setAirframe(UASInterface::QGC_AIRFRAME_HEXCOPTER);
break;
default:
// Do nothing
break;
}
}
this->autopilot = state.autopilot;
emit systemTypeSet(this, type);
}
bool currentlyArmed = state.base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY;
if (systemIsArmed != currentlyArmed)
{
systemIsArmed = currentlyArmed;
emit armingChanged(systemIsArmed);
if (systemIsArmed)
{
emit armed();
}
else
{
emit disarmed();
}
}
QString audiostring = QString("System %1").arg(uasId);
QString stateAudio = "";
QString modeAudio = "";
QString navModeAudio = "";
bool statechanged = false;
bool modechanged = false;
QString audiomodeText = getAudioModeTextFor(static_cast<int>(state.base_mode));
if ((state.system_status != this->status) && state.system_status != MAV_STATE_UNINIT)
{
statechanged = true;
this->status = state.system_status;
getStatusForCode((int)state.system_status, uasState, stateDescription);
emit statusChanged(this, uasState, stateDescription);
emit statusChanged(this->status);
shortStateText = uasState;
// Adjust for better audio
if (uasState == QString("STANDBY")) uasState = QString("standing by");
if (uasState == QString("EMERGENCY")) uasState = QString("emergency condition");
if (uasState == QString("CRITICAL")) uasState = QString("critical condition");
if (uasState == QString("SHUTDOWN")) uasState = QString("shutting down");
stateAudio = uasState;
}
if (this->base_mode != state.base_mode || this->custom_mode != state.custom_mode)
{
modechanged = true;
Thomas Gubler
committed
receivedMode = true;
this->base_mode = state.base_mode;
this->custom_mode = state.custom_mode;
shortModeText = getShortModeTextFor(this->base_mode, this->custom_mode, this->autopilot);
emit modeChanged(this->getUASID(), shortModeText, "");
modeAudio = " is now in " + audiomodeText;
}
// AUDIO
if (modechanged && statechanged)
{
// Output both messages
audiostring += modeAudio + " and " + stateAudio;
}
else if (modechanged || statechanged)
{
// Output the one message
}
if (statechanged && ((int)state.system_status == (int)MAV_STATE_CRITICAL || state.system_status == (int)MAV_STATE_EMERGENCY))
{
GAudioOutput::instance()->say(QString("emergency for system %1").arg(this->getUASID()));
QTimer::singleShot(3000, GAudioOutput::instance(), SLOT(startEmergency()));
}
else if (modechanged || statechanged)
{
GAudioOutput::instance()->stopEmergency();
GAudioOutput::instance()->say(audiostring.toLower());
}
}
break;
case MAVLINK_MSG_ID_SYS_STATUS:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
mavlink_sys_status_t state;
mavlink_msg_sys_status_decode(&message, &state);
// Prepare for sending data to the realtime plotter, which is every field excluding onboard_control_sensors_present.
quint64 time = getUnixTime();
QString name = QString("M%1:SYS_STATUS.%2").arg(message.sysid);
emit valueChanged(uasId, name.arg("sensors_enabled"), "bits", state.onboard_control_sensors_enabled, time);
emit valueChanged(uasId, name.arg("sensors_health"), "bits", state.onboard_control_sensors_health, time);
emit valueChanged(uasId, name.arg("errors_comm"), "-", state.errors_comm, time);
emit valueChanged(uasId, name.arg("errors_count1"), "-", state.errors_count1, time);
emit valueChanged(uasId, name.arg("errors_count2"), "-", state.errors_count2, time);
emit valueChanged(uasId, name.arg("errors_count3"), "-", state.errors_count3, time);
emit valueChanged(uasId, name.arg("errors_count4"), "-", state.errors_count4, time);
// Process CPU load.
emit loadChanged(this,state.load/10.0f);
emit valueChanged(uasId, name.arg("load"), "%", state.load/10.0f, time);
// Battery charge/time remaining/voltage calculations
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
currentVoltage = state.voltage_battery/1000.0f;
lpVoltage = filterVoltage(currentVoltage);
tickLowpassVoltage = tickLowpassVoltage*0.8f + 0.2f*currentVoltage;
// We don't want to tick above the threshold
if (tickLowpassVoltage > tickVoltage)
{
lastTickVoltageValue = tickLowpassVoltage;
}
if ((startVoltage > 0.0f) && (tickLowpassVoltage < tickVoltage) && (fabs(lastTickVoltageValue - tickLowpassVoltage) > 0.1f)
/* warn if lower than treshold */
&& (lpVoltage < tickVoltage)
/* warn only if we have at least the voltage of an empty LiPo cell, else we're sampling something wrong */
&& (currentVoltage > 3.3f)
/* warn only if current voltage is really still lower by a reasonable amount */
&& ((currentVoltage - 0.2f) < tickVoltage)
/* warn only every 12 seconds */
&& (QGC::groundTimeUsecs() - lastVoltageWarning) > 12000000)
{
GAudioOutput::instance()->say(QString("voltage warning: %1 volts").arg(lpVoltage, 0, 'f', 1, QChar(' ')));
lastVoltageWarning = QGC::groundTimeUsecs();
lastTickVoltageValue = tickLowpassVoltage;
}
if (startVoltage == -1.0f && currentVoltage > 0.1f) startVoltage = currentVoltage;
timeRemaining = calculateTimeRemaining();
if (!batteryRemainingEstimateEnabled && chargeLevel != -1)
{
chargeLevel = state.battery_remaining;
}
emit batteryChanged(this, lpVoltage, currentCurrent, getChargeLevel(), timeRemaining);
emit valueChanged(uasId, name.arg("battery_remaining"), "%", getChargeLevel(), time);
emit valueChanged(uasId, name.arg("battery_voltage"), "V", currentVoltage, time);
// And if the battery current draw is measured, log that also.
if (state.current_battery != -1)
{
currentCurrent = ((double)state.current_battery)/100.0f;
emit valueChanged(uasId, name.arg("battery_current"), "A", currentCurrent, time);
}
// LOW BATTERY ALARM
if (lpVoltage < warnVoltage && (currentVoltage - 0.2f) < warnVoltage && (currentVoltage > 3.3))
{
startLowBattAlarm();
}
else
{
stopLowBattAlarm();
}
// control_sensors_enabled:
// relevant bits: 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control
emit attitudeControlEnabled(state.onboard_control_sensors_enabled & (1 << 11));
emit positionYawControlEnabled(state.onboard_control_sensors_enabled & (1 << 12));
emit positionZControlEnabled(state.onboard_control_sensors_enabled & (1 << 13));
emit positionXYControlEnabled(state.onboard_control_sensors_enabled & (1 << 14));
// Trigger drop rate updates as needed. Here we convert the incoming
// drop_rate_comm value from 1/100 of a percent in a uint16 to a true
// percentage as a float. We also cap the incoming value at 100% as defined
// by the MAVLink specifications.
if (state.drop_rate_comm > 10000)
{
state.drop_rate_comm = 10000;
}
emit dropRateChanged(this->getUASID(), state.drop_rate_comm/100.0f);
emit valueChanged(uasId, name.arg("drop_rate_comm"), "%", state.drop_rate_comm/100.0f, time);
}
break;
case MAVLINK_MSG_ID_ATTITUDE:
{
mavlink_attitude_t attitude;
mavlink_msg_attitude_decode(&message, &attitude);
quint64 time = getUnixReferenceTime(attitude.time_boot_ms);
emit attitudeChanged(this, message.compid, QGC::limitAngleToPMPIf(attitude.roll), QGC::limitAngleToPMPIf(attitude.pitch), QGC::limitAngleToPMPIf(attitude.yaw), time);
if (!wrongComponent)
{
lastAttitude = time;
Michael Carpenter
committed
setRoll(QGC::limitAngleToPMPIf(attitude.roll));
setPitch(QGC::limitAngleToPMPIf(attitude.pitch));
setYaw(QGC::limitAngleToPMPIf(attitude.yaw));
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
attitudeKnown = true;
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
emit attitudeRotationRatesChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time);
}
}
break;
case MAVLINK_MSG_ID_ATTITUDE_QUATERNION:
{
mavlink_attitude_quaternion_t attitude;
mavlink_msg_attitude_quaternion_decode(&message, &attitude);
quint64 time = getUnixReferenceTime(attitude.time_boot_ms);
double a = attitude.q1;
double b = attitude.q2;
double c = attitude.q3;
double d = attitude.q4;
double aSq = a * a;
double bSq = b * b;
double cSq = c * c;
double dSq = d * d;
float dcm[3][3];
dcm[0][0] = aSq + bSq - cSq - dSq;
dcm[0][1] = 2.0 * (b * c - a * d);
dcm[0][2] = 2.0 * (a * c + b * d);
dcm[1][0] = 2.0 * (b * c + a * d);
dcm[1][1] = aSq - bSq + cSq - dSq;
dcm[1][2] = 2.0 * (c * d - a * b);
dcm[2][0] = 2.0 * (b * d - a * c);
dcm[2][1] = 2.0 * (a * b + c * d);
dcm[2][2] = aSq - bSq - cSq + dSq;
float phi, theta, psi;
theta = asin(-dcm[2][0]);
if (fabs(theta - M_PI_2) < 1.0e-3f) {
phi = 0.0f;
psi = (atan2(dcm[1][2] - dcm[0][1],
dcm[0][2] + dcm[1][1]) + phi);
} else if (fabs(theta + M_PI_2) < 1.0e-3f) {
phi = 0.0f;
psi = atan2f(dcm[1][2] - dcm[0][1],
dcm[0][2] + dcm[1][1] - phi);
} else {
phi = atan2f(dcm[2][1], dcm[2][2]);
psi = atan2f(dcm[1][0], dcm[0][0]);
}
emit attitudeChanged(this, message.compid, QGC::limitAngleToPMPIf(phi),
QGC::limitAngleToPMPIf(theta),
QGC::limitAngleToPMPIf(psi), time);
if (!wrongComponent)
{
lastAttitude = time;
setRoll(QGC::limitAngleToPMPIf(phi));
setPitch(QGC::limitAngleToPMPIf(theta));
setYaw(QGC::limitAngleToPMPIf(psi));
attitudeKnown = true;
Michael Carpenter
committed
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
emit attitudeRotationRatesChanged(uasId, attitude.rollspeed, attitude.pitchspeed, attitude.yawspeed, time);
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
}
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET:
{
mavlink_local_position_ned_system_global_offset_t offset;
mavlink_msg_local_position_ned_system_global_offset_decode(&message, &offset);
nedPosGlobalOffset.setX(offset.x);
nedPosGlobalOffset.setY(offset.y);
nedPosGlobalOffset.setZ(offset.z);
nedAttGlobalOffset.setX(offset.roll);
nedAttGlobalOffset.setY(offset.pitch);
nedAttGlobalOffset.setZ(offset.yaw);
}
break;
case MAVLINK_MSG_ID_HIL_CONTROLS:
{
mavlink_hil_controls_t hil;
mavlink_msg_hil_controls_decode(&message, &hil);
emit hilControlsChanged(hil.time_usec, hil.roll_ailerons, hil.pitch_elevator, hil.yaw_rudder, hil.throttle, hil.mode, hil.nav_mode);
}
break;
case MAVLINK_MSG_ID_VFR_HUD:
{
mavlink_vfr_hud_t hud;
mavlink_msg_vfr_hud_decode(&message, &hud);
quint64 time = getUnixTime();
// Display updated values
emit thrustChanged(this, hud.throttle/100.0);
if (!attitudeKnown)
{
Anton Babushkin
committed
setYaw(QGC::limitAngleToPMPId((((double)hud.heading)/180.0)*M_PI));
Michael Carpenter
committed
emit attitudeChanged(this, getRoll(), getPitch(), getYaw(), time);
Anton Babushkin
committed
setAltitudeAMSL(hud.alt);
setGroundSpeed(hud.groundspeed);
if (!isnan(hud.airspeed))
setAirSpeed(hud.airspeed);
speedZ = -hud.climb;
emit altitudeChanged(this, altitudeAMSL, altitudeRelative, -speedZ, time);
emit speedChanged(this, groundSpeed, airSpeed, time);
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_NED:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_local_position_ned_t pos;
mavlink_msg_local_position_ned_decode(&message, &pos);
quint64 time = getUnixTime(pos.time_boot_ms);
// Emit position always with component ID
emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time);
if (!wrongComponent)
{
Anton Babushkin
committed
setLocalX(pos.x);
setLocalY(pos.y);
setLocalZ(pos.z);
speedX = pos.vx;
speedY = pos.vy;
speedZ = pos.vz;
Anton Babushkin
committed
emit localPositionChanged(this, localX, localY, localZ, time);
emit velocityChanged_NED(this, speedX, speedY, speedZ, time);
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Set internal state
if (!positionLock) {
// If position was not locked before, notify positive
GAudioOutput::instance()->notifyPositive();
}
positionLock = true;
isLocalPositionKnown = true;
}
}
break;
case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE:
{
mavlink_global_vision_position_estimate_t pos;
mavlink_msg_global_vision_position_estimate_decode(&message, &pos);
quint64 time = getUnixTime(pos.usec);
emit localPositionChanged(this, message.compid, pos.x, pos.y, pos.z, time);
emit attitudeChanged(this, message.compid, pos.roll, pos.pitch, pos.yaw, time);
}
break;
case MAVLINK_MSG_ID_GLOBAL_POSITION_INT:
//std::cerr << std::endl;
//std::cerr << "Decoded attitude message:" << " roll: " << std::dec << mavlink_msg_attitude_get_roll(message.payload) << " pitch: " << mavlink_msg_attitude_get_pitch(message.payload) << " yaw: " << mavlink_msg_attitude_get_yaw(message.payload) << std::endl;
{
mavlink_global_position_int_t pos;
mavlink_msg_global_position_int_decode(&message, &pos);
Anton Babushkin
committed
quint64 time = getUnixTime();
Anton Babushkin
committed
Michael Carpenter
committed
setLatitude(pos.lat/(double)1E7);
setLongitude(pos.lon/(double)1E7);
Anton Babushkin
committed
setAltitudeAMSL(pos.alt/1000.0);
setAltitudeRelative(pos.relative_alt/1000.0);
globalEstimatorActive = true;
speedX = pos.vx/100.0;
speedY = pos.vy/100.0;
speedZ = pos.vz/100.0;
Anton Babushkin
committed
emit globalPositionChanged(this, getLatitude(), getLongitude(), getAltitudeAMSL(), time);
emit altitudeChanged(this, altitudeAMSL, altitudeRelative, -speedZ, time);
// We had some frame mess here, global and local axes were mixed.
emit velocityChanged_NED(this, speedX, speedY, speedZ, time);
Anton Babushkin
committed
setGroundSpeed(qSqrt(speedX*speedX+speedY*speedY));
emit speedChanged(this, groundSpeed, airSpeed, time);
// Set internal state
if (!positionLock)
{
// If position was not locked before, notify positive
GAudioOutput::instance()->notifyPositive();
}
positionLock = true;
isGlobalPositionKnown = true;
//TODO fix this hack for forwarding of global position for patch antenna tracking
forwardMessage(message);
}
break;
case MAVLINK_MSG_ID_GPS_RAW_INT:
{
mavlink_gps_raw_int_t pos;
mavlink_msg_gps_raw_int_decode(&message, &pos);
quint64 time = getUnixTime(pos.time_usec);
emit gpsLocalizationChanged(this, pos.fix_type);
// TODO: track localization state not only for gps but also for other loc. sources
int loc_type = pos.fix_type;
if (loc_type == 1)
{
loc_type = 0;
}
emit localizationChanged(this, loc_type);
Michael Carpenter
committed
setSatelliteCount(pos.satellites_visible);
if (pos.fix_type > 2)
{
Anton Babushkin
committed
positionLock = true;
isGlobalPositionKnown = true;
Michael Carpenter
committed
latitude_gps = pos.lat/(double)1E7;
longitude_gps = pos.lon/(double)1E7;
altitude_gps = pos.alt/1000.0;
// If no GLOBAL_POSITION_INT messages ever received, use these raw GPS values instead.
if (!globalEstimatorActive) {
Michael Carpenter
committed
setLatitude(latitude_gps);
setLongitude(longitude_gps);
Anton Babushkin
committed
setAltitudeAMSL(altitude_gps);
emit globalPositionChanged(this, getLatitude(), getLongitude(), getAltitudeAMSL(), time);
emit altitudeChanged(this, altitudeAMSL, altitudeRelative, -speedZ, time);
Anton Babushkin
committed
float vel = pos.vel/100.0f;
// Smaller than threshold and not NaN
if ((vel < 1000000) && !isnan(vel) && !isinf(vel)) {
Anton Babushkin
committed
emit speedChanged(this, groundSpeed, airSpeed, time);
} else {
emit textMessageReceived(uasId, message.compid, 255, QString("GCS ERROR: RECEIVED INVALID SPEED OF %1 m/s").arg(vel));
}
}
}
}
break;
case MAVLINK_MSG_ID_GPS_STATUS:
{
mavlink_gps_status_t pos;
mavlink_msg_gps_status_decode(&message, &pos);
for(int i = 0; i < (int)pos.satellites_visible; i++)
{
emit gpsSatelliteStatusChanged(uasId, (unsigned char)pos.satellite_prn[i], (unsigned char)pos.satellite_elevation[i], (unsigned char)pos.satellite_azimuth[i], (unsigned char)pos.satellite_snr[i], static_cast<bool>(pos.satellite_used[i]));
}
Michael Carpenter
committed
setSatelliteCount(pos.satellites_visible);
}
break;
case MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN:
{
mavlink_gps_global_origin_t pos;
mavlink_msg_gps_global_origin_decode(&message, &pos);
emit homePositionChanged(uasId, pos.latitude / 10000000.0, pos.longitude / 10000000.0, pos.altitude / 1000.0);
}
break;
case MAVLINK_MSG_ID_RC_CHANNELS_RAW:
{
mavlink_rc_channels_raw_t channels;
mavlink_msg_rc_channels_raw_decode(&message, &channels);
const unsigned int portWidth = 8; // XXX magic number
emit remoteControlRSSIChanged(channels.rssi/255.0f);
if (channels.chan1_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 0, channels.chan1_raw);
if (channels.chan2_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 1, channels.chan2_raw);
if (channels.chan3_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 2, channels.chan3_raw);
if (channels.chan4_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 3, channels.chan4_raw);
if (channels.chan5_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 4, channels.chan5_raw);
if (channels.chan6_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 5, channels.chan6_raw);
if (channels.chan7_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 6, channels.chan7_raw);
if (channels.chan8_raw != UINT16_MAX)
emit remoteControlChannelRawChanged(channels.port * portWidth + 7, channels.chan8_raw);
}
break;
case MAVLINK_MSG_ID_RC_CHANNELS_SCALED:
{
mavlink_rc_channels_scaled_t channels;
mavlink_msg_rc_channels_scaled_decode(&message, &channels);
const unsigned int portWidth = 8; // XXX magic number
emit remoteControlRSSIChanged(channels.rssi/255.0f);
if (static_cast<uint16_t>(channels.chan1_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 0, channels.chan1_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan2_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 1, channels.chan2_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan3_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 2, channels.chan3_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan4_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 3, channels.chan4_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan5_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 4, channels.chan5_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan6_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 5, channels.chan6_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan7_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 6, channels.chan7_scaled/10000.0f);
if (static_cast<uint16_t>(channels.chan8_scaled) != UINT16_MAX)
emit remoteControlChannelScaledChanged(channels.port * portWidth + 7, channels.chan8_scaled/10000.0f);
}
break;
case MAVLINK_MSG_ID_PARAM_VALUE:
{
mavlink_param_value_t rawValue;
mavlink_msg_param_value_decode(&message, &rawValue);
QByteArray bytes(rawValue.param_id, MAVLINK_MSG_PARAM_VALUE_FIELD_PARAM_ID_LEN);
// Construct a string stopping at the first NUL (0) character, else copy the whole
// byte array (max MAVLINK_MSG_PARAM_VALUE_FIELD_PARAM_ID_LEN, so safe)
QString parameterName(bytes);
mavlink_param_union_t paramVal;
paramVal.param_float = rawValue.param_value;
paramVal.type = rawValue.param_type;
processParamValueMsg(message, parameterName,rawValue,paramVal);
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
break;
case MAVLINK_MSG_ID_COMMAND_ACK:
{
mavlink_command_ack_t ack;
mavlink_msg_command_ack_decode(&message, &ack);
switch (ack.result)
{
case MAV_RESULT_ACCEPTED:
{
emit textMessageReceived(uasId, message.compid, 0, tr("SUCCESS: Executed CMD: %1").arg(ack.command));
}
break;
case MAV_RESULT_TEMPORARILY_REJECTED:
{
emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Temporarily rejected CMD: %1").arg(ack.command));
}
break;
case MAV_RESULT_DENIED:
{
emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Denied CMD: %1").arg(ack.command));
}
break;
case MAV_RESULT_UNSUPPORTED:
{
emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Unsupported CMD: %1").arg(ack.command));
}
break;
case MAV_RESULT_FAILED:
{
emit textMessageReceived(uasId, message.compid, 0, tr("FAILURE: Failed CMD: %1").arg(ack.command));
}
break;
}
}
case MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT:
{
mavlink_roll_pitch_yaw_thrust_setpoint_t out;
mavlink_msg_roll_pitch_yaw_thrust_setpoint_decode(&message, &out);
quint64 time = getUnixTimeFromMs(out.time_boot_ms);
emit attitudeThrustSetPointChanged(this, out.roll, out.pitch, out.yaw, out.thrust, time);
}
break;
case MAVLINK_MSG_ID_MISSION_COUNT:
{
mavlink_mission_count_t wpc;
mavlink_msg_mission_count_decode(&message, &wpc);
if(wpc.target_system == mavlink->getSystemId() || wpc.target_system == 0)
{
waypointManager.handleWaypointCount(message.sysid, message.compid, wpc.count);
}
else
{
qDebug() << "Got waypoint message, but was wrong system id" << wpc.target_system;
}
}
break;
case MAVLINK_MSG_ID_MISSION_ITEM:
{
mavlink_mission_item_t wp;
mavlink_msg_mission_item_decode(&message, &wp);
//qDebug() << "got waypoint (" << wp.seq << ") from ID " << message.sysid << " x=" << wp.x << " y=" << wp.y << " z=" << wp.z;
if(wp.target_system == mavlink->getSystemId() || wp.target_system == 0)
{
waypointManager.handleWaypoint(message.sysid, message.compid, &wp);
}
else
{
qDebug() << "Got waypoint message, but was wrong system id" << wp.target_system;
}
}
break;
case MAVLINK_MSG_ID_MISSION_ACK:
{
mavlink_mission_ack_t wpa;
mavlink_msg_mission_ack_decode(&message, &wpa);
if((wpa.target_system == mavlink->getSystemId() || wpa.target_system == 0) &&
(wpa.target_component == mavlink->getComponentId() || wpa.target_component == 0))
{
waypointManager.handleWaypointAck(message.sysid, message.compid, &wpa);
}
}
break;
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
mavlink_mission_request_t wpr;
mavlink_msg_mission_request_decode(&message, &wpr);
if(wpr.target_system == mavlink->getSystemId() || wpr.target_system == 0)
{
waypointManager.handleWaypointRequest(message.sysid, message.compid, &wpr);
}
else
{
qDebug() << "Got waypoint message, but was wrong system id" << wpr.target_system;
}
}
break;
case MAVLINK_MSG_ID_MISSION_ITEM_REACHED:
{
mavlink_mission_item_reached_t wpr;
mavlink_msg_mission_item_reached_decode(&message, &wpr);
waypointManager.handleWaypointReached(message.sysid, message.compid, &wpr);
QString text = QString("System %1 reached waypoint %2").arg(getUASName()).arg(wpr.seq);
GAudioOutput::instance()->say(text);
emit textMessageReceived(message.sysid, message.compid, 0, text);
}
break;
case MAVLINK_MSG_ID_MISSION_CURRENT:
{
mavlink_mission_current_t wpc;
mavlink_msg_mission_current_decode(&message, &wpc);
waypointManager.handleWaypointCurrent(message.sysid, message.compid, &wpc);
}
break;
case MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT:
{
if (multiComponentSourceDetected && wrongComponent)
{
break;
}
mavlink_local_position_setpoint_t p;
mavlink_msg_local_position_setpoint_decode(&message, &p);
emit positionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw, QGC::groundTimeUsecs());
}
break;
case MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT:
{
mavlink_set_local_position_setpoint_t p;
mavlink_msg_set_local_position_setpoint_decode(&message, &p);
emit userPositionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw);
}
break;
case MAVLINK_MSG_ID_STATUSTEXT:
{
QByteArray b;
Lorenz Meier
committed
b.resize(MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1);
mavlink_msg_statustext_get_text(&message, b.data());
Lorenz Meier
committed
// Ensure NUL-termination
b[b.length()-1] = '\0';
QString text = QString(b);
int severity = mavlink_msg_statustext_get_severity(&message);
if (text.startsWith("#audio:"))
{
text.remove("#audio:");
emit textMessageReceived(uasId, message.compid, severity, QString("Audio message: ") + text);
GAudioOutput::instance()->say(text, severity);
}
else
{
emit textMessageReceived(uasId, message.compid, severity, text);
}
}
break;
Hyon Lim (Retina)
committed
#if 0
case MAVLINK_MSG_ID_SERVO_OUTPUT_RAW:
{
mavlink_servo_output_raw_t raw;
mavlink_msg_servo_output_raw_decode(&message, &raw);
if (hilEnabled && raw.port == 0)
emit hilActuatorsChanged(static_cast<uint64_t>(getUnixTimeFromMs(raw.time_usec)), static_cast<float>(raw.servo1_raw),
static_cast<float>(raw.servo2_raw), static_cast<float>(raw.servo3_raw),
static_cast<float>(raw.servo4_raw), static_cast<float>(raw.servo5_raw), static_cast<float>(raw.servo6_raw),
static_cast<float>(raw.servo7_raw), static_cast<float>(raw.servo8_raw));
}
}
break;
Hyon Lim (Retina)
committed
#endif
case MAVLINK_MSG_ID_DATA_TRANSMISSION_HANDSHAKE:
{
mavlink_data_transmission_handshake_t p;
mavlink_msg_data_transmission_handshake_decode(&message, &p);
imageSize = p.size;
imagePackets = p.packets;
imagePayload = p.payload;
imageQuality = p.jpg_quality;
imageType = p.type;
imageWidth = p.width;
imageHeight = p.height;
imageStart = QGC::groundTimeMilliseconds();
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
}
break;
case MAVLINK_MSG_ID_ENCAPSULATED_DATA:
{
mavlink_encapsulated_data_t img;
mavlink_msg_encapsulated_data_decode(&message, &img);
int seq = img.seqnr;
int pos = seq * imagePayload;
// Check if we have a valid transaction
if (imagePackets == 0)
{
// NO VALID TRANSACTION - ABORT
// Restart statemachine
imagePacketsArrived = 0;
}
for (int i = 0; i < imagePayload; ++i)
{
if (pos <= imageSize) {
imageRecBuffer[pos] = img.data[i];
}
++pos;
}
++imagePacketsArrived;
// emit signal if all packets arrived
if ((imagePacketsArrived >= imagePackets))
{
// Restart statemachine
emit imageReady(this);
//qDebug() << "imageReady emitted. all packets arrived";
}
}
break;
// case MAVLINK_MSG_ID_OBJECT_DETECTION_EVENT:
// {
// mavlink_object_detection_event_t event;
// mavlink_msg_object_detection_event_decode(&message, &event);
// QString str(event.name);
// emit objectDetected(event.time, event.object_id, event.type, str, event.quality, event.bearing, event.distance);
// }
// break;
// WILL BE ENABLED ONCE MESSAGE IS IN COMMON MESSAGE SET
// case MAVLINK_MSG_ID_MEMORY_VECT:
// {
// mavlink_memory_vect_t vect;
// mavlink_msg_memory_vect_decode(&message, &vect);
// QString str("mem_%1");
// quint64 time = getUnixTime(0);
// int16_t *mem0 = (int16_t *)&vect.value[0];
// uint16_t *mem1 = (uint16_t *)&vect.value[0];
// int32_t *mem2 = (int32_t *)&vect.value[0];
// // uint32_t *mem3 = (uint32_t *)&vect.value[0]; causes overload problem
// float *mem4 = (float *)&vect.value[0];
// if ( vect.ver == 0) vect.type = 0, vect.ver = 1; else ;
// if ( vect.ver == 1)
// {
// switch (vect.type) {
// default:
// case 0:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "i16", mem0[i], time);
// break;
// case 1:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "ui16", mem1[i], time);
// break;
// case 2:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "Q15", (float)mem0[i]/32767.0, time);
// break;
// case 3:
// for (int i = 0; i < 16; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*2)), "1Q14", (float)mem0[i]/16383.0, time);
// break;
// case 4:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time);
// break;
// case 5:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "i32", mem2[i], time);
// break;
// case 6:
// for (int i = 0; i < 8; i++)
// // FIXME REMOVE LATER emit valueChanged(uasId, str.arg(vect.address+(i*4)), "float", mem4[i], time);
// break;
// }
// }
// }
// break;
#ifdef MAVLINK_ENABLED_UALBERTA
case MAVLINK_MSG_ID_NAV_FILTER_BIAS:
{
mavlink_nav_filter_bias_t bias;
mavlink_msg_nav_filter_bias_decode(&message, &bias);
quint64 time = getUnixTime();
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[0]", "raw", bias.accel_0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[1]", "raw", bias.accel_1, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_f[2]", "raw", bias.accel_2, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[0]", "raw", bias.gyro_0, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[1]", "raw", bias.gyro_1, time);
// FIXME REMOVE LATER emit valueChanged(uasId, "b_w[2]", "raw", bias.gyro_2, time);
}
break;
case MAVLINK_MSG_ID_RADIO_CALIBRATION:
{
mavlink_radio_calibration_t radioMsg;
mavlink_msg_radio_calibration_decode(&message, &radioMsg);
QVector<uint16_t> aileron;
QVector<uint16_t> elevator;
QVector<uint16_t> rudder;
QVector<uint16_t> gyro;
QVector<uint16_t> pitch;
QVector<uint16_t> throttle;
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_AILERON_LEN; ++i)
aileron << radioMsg.aileron[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_ELEVATOR_LEN; ++i)
elevator << radioMsg.elevator[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_RUDDER_LEN; ++i)
rudder << radioMsg.rudder[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_GYRO_LEN; ++i)
gyro << radioMsg.gyro[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_PITCH_LEN; ++i)
pitch << radioMsg.pitch[i];
for (int i=0; i<MAVLINK_MSG_RADIO_CALIBRATION_FIELD_THROTTLE_LEN; ++i)
throttle << radioMsg.throttle[i];
QPointer<RadioCalibrationData> radioData = new RadioCalibrationData(aileron, elevator, rudder, gyro, pitch, throttle);
emit radioCalibrationReceived(radioData);
delete radioData;
}
break;
#endif
// Messages to ignore
case MAVLINK_MSG_ID_RAW_IMU:
case MAVLINK_MSG_ID_SCALED_IMU:
case MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT:
Michael Carpenter
committed
{
//mavlink_set_local_position_setpoint_t p;
//mavlink_msg_set_local_position_setpoint_decode(&message, &p);
//emit userPositionSetPointsChanged(uasId, p.x, p.y, p.z, p.yaw);
mavlink_nav_controller_output_t p;
mavlink_msg_nav_controller_output_decode(&message,&p);
setDistToWaypoint(p.wp_dist);
setBearingToWaypoint(p.nav_bearing);
//setAltitudeError(p.alt_error);
//setSpeedError(p.aspd_error);
//setCrosstrackingError(p.xtrack_error);
emit navigationControllerErrorsChanged(this, p.alt_error, p.aspd_error, p.xtrack_error);
Michael Carpenter
committed
}
break;
case MAVLINK_MSG_ID_RAW_PRESSURE:
case MAVLINK_MSG_ID_SCALED_PRESSURE:
case MAVLINK_MSG_ID_OPTICAL_FLOW:
case MAVLINK_MSG_ID_DEBUG_VECT:
case MAVLINK_MSG_ID_DEBUG:
case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT:
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
case MAVLINK_MSG_ID_MANUAL_CONTROL:
case MAVLINK_MSG_ID_HIGHRES_IMU:
break;
default:
{
if (!unknownPackets.contains(message.msgid))
{
unknownPackets.append(message.msgid);
emit unknownPacketReceived(uasId, message.compid, message.msgid);
qWarning() << "Unknown message from system:" << uasId << "message:" << message.msgid;
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
}
}
break;
}
}
}
#if defined(QGC_PROTOBUF_ENABLED)
/**
* Receive an extended message.
* @param link
* @param message
*/
void UAS::receiveExtendedMessage(LinkInterface* link, std::tr1::shared_ptr<google::protobuf::Message> message)
{
if (!link)
{
return;
}
if (!links->contains(link))
{
addLink(link);
}
const google::protobuf::Descriptor* descriptor = message->GetDescriptor();
if (!descriptor)
{
return;
}
const google::protobuf::FieldDescriptor* headerField = descriptor->FindFieldByName("header");
if (!headerField)
{
return;
}
const google::protobuf::Descriptor* headerDescriptor = headerField->message_type();
if (!headerDescriptor)
{
return;
}
const google::protobuf::FieldDescriptor* sourceSysIdField = headerDescriptor->FindFieldByName("source_sysid");
if (!sourceSysIdField)
{
return;
}
const google::protobuf::Reflection* reflection = message->GetReflection();
const google::protobuf::Message& headerMsg = reflection->GetMessage(*message, headerField);
const google::protobuf::Reflection* headerReflection = headerMsg.GetReflection();
int source_sysid = headerReflection->GetInt32(headerMsg, sourceSysIdField);
if (source_sysid != uasId)
{
return;
}
#ifdef QGC_USE_PIXHAWK_MESSAGES
if (message->GetTypeName() == overlay.GetTypeName())
{
receivedOverlayTimestamp = QGC::groundTimeSeconds();
overlayMutex.lock();
overlay.CopyFrom(*message);
overlayMutex.unlock();
emit overlayChanged(this);
}
else if (message->GetTypeName() == obstacleList.GetTypeName())
{
receivedObstacleListTimestamp = QGC::groundTimeSeconds();
obstacleListMutex.lock();
obstacleList.CopyFrom(*message);
obstacleListMutex.unlock();
emit obstacleListChanged(this);
}
else if (message->GetTypeName() == path.GetTypeName())
{
receivedPathTimestamp = QGC::groundTimeSeconds();
pathMutex.lock();
path.CopyFrom(*message);
pathMutex.unlock();
emit pathChanged(this);
}
else if (message->GetTypeName() == pointCloud.GetTypeName())
{
receivedPointCloudTimestamp = QGC::groundTimeSeconds();
pointCloudMutex.lock();
pointCloud.CopyFrom(*message);
pointCloudMutex.unlock();
emit pointCloudChanged(this);
}
else if (message->GetTypeName() == rgbdImage.GetTypeName())
{
receivedRGBDImageTimestamp = QGC::groundTimeSeconds();
rgbdImageMutex.lock();
rgbdImage.CopyFrom(*message);
rgbdImageMutex.unlock();
emit rgbdImageChanged(this);
}
#endif
}
#endif
/**
* Set the home position of the UAS.
* @param lat The latitude fo the home position
* @param lon The longitude of the home position
* @param alt The altitude of the home position
*/
void UAS::setHomePosition(double lat, double lon, double alt)
{
if (blockHomePositionChanges)
return;
QString uasName = (getUASName() == "")?
tr("UAS") + QString::number(getUASID())
: getUASName();
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText(tr("Set a new home position for vehicle %1").arg(uasName));
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 0, 0, 0, 0, lat, lon, alt);
// Send message twice to increase chance that it reaches its goal
sendMessage(msg);
// Send new home position to UAS
mavlink_set_gps_global_origin_t home;
home.target_system = uasId;
home.latitude = lat*1E7;
home.longitude = lon*1E7;
home.altitude = alt*1000;
qDebug() << "lat:" << home.latitude << " lon:" << home.longitude;
mavlink_msg_set_gps_global_origin_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &home);
sendMessage(msg);
} else {
blockHomePositionChanges = true;
}
}
/**
* Set the origin to the current GPS location.
**/
void UAS::setLocalOriginAtCurrentGPSPosition()
{
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText("Set the home position at the current GPS position?");
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
msgBox.setInformativeText("Do you want to set a new origin? Waypoints defined in the local frame will be shifted in their physical location");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_DO_SET_HOME, 1, 1, 0, 0, 0, 0, 0, 0);
// Send message twice to increase chance that it reaches its goal
sendMessage(msg);
}
}
/**
* Set a local position setpoint.
* @param x postion
* @param y position
* @param z position
*/
void UAS::setLocalPositionSetpoint(float x, float y, float z, float yaw)
{
#ifdef MAVLINK_ENABLED_PIXHAWK
mavlink_message_t msg;
mavlink_msg_set_local_position_setpoint_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_FRAME_LOCAL_NED, x, y, z, yaw/M_PI*180.0);
sendMessage(msg);
#else
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
}
/**
* Set a offset of the local position.
* @param x position
* @param y position
* @param z position
* @param yaw
*/
void UAS::setLocalPositionOffset(float x, float y, float z, float yaw)
{
#ifdef MAVLINK_ENABLED_PIXHAWK
mavlink_message_t msg;
mavlink_msg_set_position_control_offset_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, x, y, z, yaw);
sendMessage(msg);
#else
Q_UNUSED(x);
Q_UNUSED(y);
Q_UNUSED(z);
Q_UNUSED(yaw);
#endif
}
Lorenz Meier
committed
void UAS::startRadioControlCalibration(int param)
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
Lorenz Meier
committed
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 0, param, 0, 0, 0);
Lorenz Meier
committed
sendMessage(msg);
}
void UAS::endRadioControlCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 0, 0, 0, 0, 0);
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
sendMessage(msg);
}
void UAS::startDataRecording()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 2, 0, 0, 0);
sendMessage(msg);
}
void UAS::stopDataRecording()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_DO_CONTROL_VIDEO, 1, -1, -1, -1, 0, 0, 0, 0);
sendMessage(msg);
}
void UAS::startMagnetometerCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 1, 0, 0, 0, 0, 0);
sendMessage(msg);
}
void UAS::startGyroscopeCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 1, 0, 0, 0, 0, 0, 0);
sendMessage(msg);
}
void UAS::startPressureCalibration()
{
mavlink_message_t msg;
// Param 1: gyro cal, param 2: mag cal, param 3: pressure cal, Param 4: radio
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_IMU, MAV_CMD_PREFLIGHT_CALIBRATION, 1, 0, 0, 1, 0, 0, 0, 0);
sendMessage(msg);
}
/**
* Check if time is smaller than 40 years, assuming no system without Unix
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
* timestamp runs longer than 40 years continuously without reboot. In worst case
* this will add/subtract the communication delay between GCS and MAV, it will
* never alter the timestamp in a safety critical way.
*/
quint64 UAS::getUnixReferenceTime(quint64 time)
{
// Same as getUnixTime, but does not react to attitudeStamped mode
if (time == 0)
{
// qDebug() << "XNEW time:" <<QGC::groundTimeMilliseconds();
return QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0)
{
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
return time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
return time/1000;
}
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stamp of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are still
* roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED RUINS THE
* SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTimeFromMs(quint64 time)
{
return getUnixTime(time*1000);
}
/**
* @warning If attitudeStamped is enabled, this function will not actually return
* the precise time stam of this measurement augmented to UNIX time, but will
* MOVE the timestamp IN TIME to match the last measured attitude. There is no
* reason why one would want this, except for system setups where the onboard
* clock is not present or broken and datasets should be collected that are
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
* still roughly synchronized. PLEASE NOTE THAT ENABLING ATTITUDE STAMPED
* RUINS THE SCIENTIFIC NATURE OF THE CORRECT LOGGING FUNCTIONS OF QGROUNDCONTROL!
*/
quint64 UAS::getUnixTime(quint64 time)
{
quint64 ret = 0;
if (attitudeStamped)
{
ret = lastAttitude;
}
if (time == 0)
{
ret = QGC::groundTimeMilliseconds();
}
// Check if time is smaller than 40 years,
// assuming no system without Unix timestamp
// runs longer than 40 years continuously without
// reboot. In worst case this will add/subtract the
// communication delay between GCS and MAV,
// it will never alter the timestamp in a safety
// critical way.
//
// Calculation:
// 40 years
// 365 days
// 24 hours
// 60 minutes
// 60 seconds
// 1000 milliseconds
// 1000 microseconds
#ifndef _MSC_VER
else if (time < 1261440000000000LLU)
#else
else if (time < 1261440000000000)
#endif
{
// qDebug() << "GEN time:" << time/1000 + onboardTimeOffset;
if (onboardTimeOffset == 0 || time < (lastNonNullTime - 100))
{
lastNonNullTime = time;
onboardTimeOffset = QGC::groundTimeMilliseconds() - time/1000;
}
if (time > lastNonNullTime) lastNonNullTime = time;
ret = time/1000 + onboardTimeOffset;
}
else
{
// Time is not zero and larger than 40 years -> has to be
// a Unix epoch timestamp. Do nothing.
ret = time/1000;
}
return ret;
}
/**
* @param component that will be searched for in the map of parameters.
*/
QList<QString> UAS::getParameterNames(int component)
{
if (parameters.contains(component))
{
return parameters.value(component)->keys();
}
else
{
return QList<QString>();
}
}
QList<int> UAS::getComponentIds()
{
return parameters.keys();
}
/**
Thomas Gubler
committed
* @param newBaseMode that UAS is to be set to.
* @param newCustomMode that UAS is to be set to.
void UAS::setMode(uint8_t newBaseMode, uint32_t newCustomMode)
Thomas Gubler
committed
if (receivedMode)
{
//this->mode = mode; //no call assignament, update receive message from UAS
Thomas Gubler
committed
// Strip armed / disarmed call for safety reasons, this is not relevant for setting the mode
newBaseMode &= ~MAV_MODE_FLAG_SAFETY_ARMED;
// Now set current state (request no change)
newBaseMode |= this->base_mode & MAV_MODE_FLAG_SAFETY_ARMED;
Thomas Gubler
committed
// // Strip HIL part, replace it with current system state
// newBaseMode &= (~MAV_MODE_FLAG_HIL_ENABLED);
// // Now set current state (request no change)
// newBaseMode |= this->base_mode & MAV_MODE_FLAG_HIL_ENABLED;
Thomas Gubler
committed
setModeArm(newBaseMode, newCustomMode);
}
else
{
qDebug() << "WARNING: setMode called before base_mode bitmask was received from UAS, new mode was not sent to system";
Thomas Gubler
committed
}
}
/**
* @param newBaseMode that UAS is to be set to.
* @param newCustomMode that UAS is to be set to.
*/
void UAS::setModeArm(uint8_t newBaseMode, uint32_t newCustomMode)
{
if (receivedMode)
{
mavlink_message_t msg;
mavlink_msg_set_mode_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, (uint8_t)uasId, newBaseMode, newCustomMode);
qDebug() << "mavlink_msg_set_mode_pack 1";
sendMessage(msg);
qDebug() << "SENDING REQUEST TO SET MODE TO SYSTEM" << uasId << ", MODE " << newBaseMode << " " << newCustomMode;
}
else
{
qDebug() << "WARNING: setModeArm called before base_mode bitmask was received from UAS, new mode was not sent to system";
Thomas Gubler
committed
}
}
/**
* Send a message to every link that is connected.
* @param message that is to be sent
*/
void UAS::sendMessage(mavlink_message_t message)
{
if (!LinkManager::instance())
{
qWarning() << "LINKMANAGER NOT AVAILABLE!";
return;
}
if (links->count() < 1) {
qDebug() << "NO LINK AVAILABLE TO SEND!";
}
// Emit message on all links that are currently connected
foreach (LinkInterface* link, *links)
{
if (LinkManager::instance()->getLinks().contains(link))
{
if (link->isConnected())
sendMessage(link, message);
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
}
else
{
// Remove from list
links->removeAt(links->indexOf(link));
}
}
}
/**
* Forward a message to all links that are currently connected.
* @param message that is to be forwarded
*/
void UAS::forwardMessage(mavlink_message_t message)
{
// Emit message on all links that are currently connected
QList<LinkInterface*>link_list = LinkManager::instance()->getLinksForProtocol(mavlink);
foreach(LinkInterface* link, link_list)
{
if (link)
{
SerialLink* serial = dynamic_cast<SerialLink*>(link);
if(serial != 0)
{
for(int i=0; i<links->size(); i++)
{
if(serial != links->at(i))
{
if (link->isConnected()) {
qDebug()<<"Antenna tracking: Forwarding Over link: "<<serial->getName()<<" "<<serial;
sendMessage(serial, message);
}
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
}
}
}
}
}
}
/**
* Send a message to the link that is connected.
* @param link that the message will be sent to
* @message that is to be sent
*/
void UAS::sendMessage(LinkInterface* link, mavlink_message_t message)
{
if(!link) return;
// Create buffer
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
// Write message into buffer, prepending start sign
int len = mavlink_msg_to_send_buffer(buffer, &message);
static uint8_t messageKeys[256] = MAVLINK_MESSAGE_CRCS;
mavlink_finalize_message_chan(&message, mavlink->getSystemId(), mavlink->getComponentId(), link->getId(), message.len, messageKeys[message.msgid]);
// If link is connected
if (link->isConnected())
{
// Send the portion of the buffer now occupied by the message
link->writeBytes((const char*)buffer, len);
}
else
{
qDebug() << "LINK NOT CONNECTED, NOT SENDING!";
}
}
/**
* @param value battery voltage
*/
float UAS::filterVoltage(float value) const
{
/**
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
* Get the status of the code and a description of the status.
* Status can be unitialized, booting up, calibrating sensors, active
* standby, cirtical, emergency, shutdown or unknown.
*/
void UAS::getStatusForCode(int statusCode, QString& uasState, QString& stateDescription)
{
switch (statusCode)
{
case MAV_STATE_UNINIT:
uasState = tr("UNINIT");
stateDescription = tr("Unitialized, booting up.");
break;
case MAV_STATE_BOOT:
uasState = tr("BOOT");
stateDescription = tr("Booting system, please wait.");
break;
case MAV_STATE_CALIBRATING:
uasState = tr("CALIBRATING");
stateDescription = tr("Calibrating sensors, please wait.");
break;
case MAV_STATE_ACTIVE:
uasState = tr("ACTIVE");
stateDescription = tr("Active, normal operation.");
break;
case MAV_STATE_STANDBY:
uasState = tr("STANDBY");
stateDescription = tr("Standby mode, ready for launch.");
break;
case MAV_STATE_CRITICAL:
uasState = tr("CRITICAL");
stateDescription = tr("FAILURE: Continuing operation.");
break;
case MAV_STATE_EMERGENCY:
uasState = tr("EMERGENCY");
stateDescription = tr("EMERGENCY: Land Immediately!");
break;
//case MAV_STATE_HILSIM:
//uasState = tr("HIL SIM");
//stateDescription = tr("HIL Simulation, Sensors read from SIM");
//break;
case MAV_STATE_POWEROFF:
uasState = tr("SHUTDOWN");
stateDescription = tr("Powering off system.");
break;
default:
uasState = tr("UNKNOWN");
stateDescription = tr("Unknown system state");
break;
}
}
QImage UAS::getImage()
{
// qDebug() << "IMAGE TYPE:" << imageType;
// RAW greyscale
if (imageType == MAVLINK_DATA_STREAM_IMG_RAW8U)
{
// Construct PGM header
QString header("P5\n%1 %2\n%3\n");
header = header.arg(imageWidth).arg(imageHeight).arg(imgColors);
QByteArray tmpImage(header.toStdString().c_str(), header.toStdString().size());
tmpImage.append(imageRecBuffer);
//qDebug() << "IMAGE SIZE:" << tmpImage.size() << "HEADER SIZE: (15):" << header.size() << "HEADER: " << header;
if (imageRecBuffer.isNull())
{
qDebug()<< "could not convertToPGM()";
return QImage();
}
if (!image.loadFromData(tmpImage, "PGM"))
{
qDebug()<< __FILE__ << __LINE__ << "could not create extracted image";
return QImage();
}
}
// BMP with header
else if (imageType == MAVLINK_DATA_STREAM_IMG_BMP ||
imageType == MAVLINK_DATA_STREAM_IMG_JPEG ||
imageType == MAVLINK_DATA_STREAM_IMG_PGM ||
imageType == MAVLINK_DATA_STREAM_IMG_PNG)
{
if (!image.loadFromData(imageRecBuffer))
{
qDebug() << __FILE__ << __LINE__ << "Loading data from image buffer failed!";
}
}
// Restart statemachine
imagePacketsArrived = 0;
//imageRecBuffer.clear();
return image;
}
void UAS::requestImage()
{
qDebug() << "trying to get an image from the uas...";
// check if there is already an image transmission going on
if (imagePacketsArrived == 0)
{
mavlink_message_t msg;
mavlink_msg_data_transmission_handshake_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, MAVLINK_DATA_STREAM_IMG_JPEG, 0, 0, 0, 0, 0, 50);
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
sendMessage(msg);
}
}
/* MANAGEMENT */
/**
*
* @return The uptime in milliseconds
*
*/
quint64 UAS::getUptime() const
{
if(startTime == 0)
{
return 0;
}
else
{
return QGC::groundTimeMilliseconds() - startTime;
}
}
int UAS::getCommunicationStatus() const
{
return commStatus;
}
void UAS::requestParameters()
{
mavlink_message_t msg;
mavlink_msg_param_request_list_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), MAV_COMP_ID_ALL);
sendMessage(msg);
QDateTime time = QDateTime::currentDateTime();
qDebug() << __FILE__ << ":" << __LINE__ << time.toString() << "LOADING PARAM LIST";
}
void UAS::writeParametersToStorage()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 1, -1, -1, -1, 0, 0, 0);
qDebug() << "SENT COMMAND" << MAV_CMD_PREFLIGHT_STORAGE;
sendMessage(msg);
}
void UAS::readParametersFromStorage()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, 0, MAV_CMD_PREFLIGHT_STORAGE, 1, 0, -1, -1, -1, 0, 0, 0);
sendMessage(msg);
}
bool UAS::isRotaryWing()
{
Thomas Gubler
committed
switch (type) {
case MAV_TYPE_QUADROTOR:
/* fallthrough */
case MAV_TYPE_COAXIAL:
case MAV_TYPE_HELICOPTER:
case MAV_TYPE_HEXAROTOR:
case MAV_TYPE_OCTOROTOR:
case MAV_TYPE_TRICOPTER:
return true;
default:
return false;
}
}
bool UAS::isFixedWing()
{
Thomas Gubler
committed
switch (type) {
case MAV_TYPE_FIXED_WING:
return true;
default:
return false;
}
}
/**
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableAllDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
// 0 is a magic ID and will enable/disable the standard message set except for heartbeat
stream.req_stream_id = MAV_DATA_STREAM_ALL;
// Select the update rate in Hz the message should be send
// All messages will be send with their default rate
// TODO: use 0 to turn off and get rid of enable/disable? will require
// a different magic flag for turning on defaults, possibly something really high like 1111 ?
stream.req_message_rate = 0;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
}
/**
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableRawSensorDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSORS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
}
/**
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableExtendedSystemStatusTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTENDED_STATUS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
}
/**
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableRCChannelDataTransmission(int rate)
{
#if defined(MAVLINK_ENABLED_UALBERTA_MESSAGES)
mavlink_message_t msg;
mavlink_msg_request_rc_channels_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, enabled);
sendMessage(msg);
#else
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RC_CHANNELS;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
#endif
}
/**
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableRawControllerDataTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_RAW_CONTROLLER;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
}
//void UAS::enableRawSensorFusionTransmission(int rate)
//{
// // Buffers to write data to
// mavlink_message_t msg;
// mavlink_request_data_stream_t stream;
// // Select the message to request from now on
// stream.req_stream_id = MAV_DATA_STREAM_RAW_SENSOR_FUSION;
// // Select the update rate in Hz the message should be send
// stream.req_message_rate = rate;
// // Start / stop the message
// stream.start_stop = (rate) ? 1 : 0;
// // The system which should take this command
// stream.target_system = uasId;
// // The component / subsystem which should take this command
// stream.target_component = 0;
// // Encode and send the message
// mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
//}
/**
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enablePositionTransmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_POSITION;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
}
/**
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableExtra1Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA1;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableExtra2Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA2;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
* @param rate The update rate in Hz the message should be sent
*/
void UAS::enableExtra3Transmission(int rate)
{
// Buffers to write data to
mavlink_message_t msg;
mavlink_request_data_stream_t stream;
// Select the message to request from now on
stream.req_stream_id = MAV_DATA_STREAM_EXTRA3;
// Select the update rate in Hz the message should be send
stream.req_message_rate = rate;
// Start / stop the message
stream.start_stop = (rate) ? 1 : 0;
// The system which should take this command
stream.target_system = uasId;
// The component / subsystem which should take this command
stream.target_component = 0;
// Encode and send the message
mavlink_msg_request_data_stream_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &stream);
// Send message twice to increase chance of reception
sendMessage(msg);
sendMessage(msg);
}
/**
* Set a parameter value onboard
*
* @param component The component to set the parameter
* @param id Name of the parameter
void UAS::setParameter(const int compId, const QString& paramId, const QVariant& value)
{
mavlink_message_t msg;
mavlink_param_set_t p;
mavlink_param_union_t union_value;
// Assign correct value based on QVariant
// TODO: This is a hack for MAV_AUTOPILOT_ARDUPILOTMEGA until the new version of MAVLink and a fix for their param handling.
Michael Carpenter
committed
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA)
switch ((int)value.type())
Michael Carpenter
committed
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
{
case QVariant::Char:
union_value.param_float = (unsigned char)value.toChar().toAscii();
p.param_type = MAV_PARAM_TYPE_INT8;
break;
case QVariant::Int:
union_value.param_float = value.toInt();
p.param_type = MAV_PARAM_TYPE_INT32;
break;
case QVariant::UInt:
union_value.param_float = value.toUInt();
p.param_type = MAV_PARAM_TYPE_UINT32;
break;
case QMetaType::Float:
union_value.param_float = value.toFloat();
p.param_type = MAV_PARAM_TYPE_REAL32;
break;
default:
qCritical() << "ABORTED PARAM SEND, NO VALID QVARIANT TYPE";
return;
}
}
else
{
switch ((int)value.type())
Michael Carpenter
committed
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
{
case QVariant::Char:
union_value.param_int8 = (unsigned char)value.toChar().toAscii();
p.param_type = MAV_PARAM_TYPE_INT8;
break;
case QVariant::Int:
union_value.param_int32 = value.toInt();
p.param_type = MAV_PARAM_TYPE_INT32;
break;
case QVariant::UInt:
union_value.param_uint32 = value.toUInt();
p.param_type = MAV_PARAM_TYPE_UINT32;
break;
case QMetaType::Float:
union_value.param_float = value.toFloat();
p.param_type = MAV_PARAM_TYPE_REAL32;
break;
default:
qCritical() << "ABORTED PARAM SEND, NO VALID QVARIANT TYPE";
return;
}
}
p.param_value = union_value.param_float;
p.target_system = (uint8_t)uasId;
p.target_component = (uint8_t)compId;
//qDebug() << "SENT PARAM:" << value;
// Copy string into buffer, ensuring not to exceed the buffer size
for (unsigned int i = 0; i < sizeof(p.param_id); i++)
{
// String characters
if ((int)i < paramId.length())
p.param_id[i] = paramId.toAscii()[i];
}
else
{
// Fill rest with zeros
p.param_id[i] = 0;
}
}
mavlink_msg_param_set_encode(mavlink->getSystemId(), compId, &msg, &p);
sendMessage(msg);
}
}
//TODO update this to use the parameter manager / param data model instead
void UAS::processParamValueMsg(mavlink_message_t& msg, const QString& paramName, const mavlink_param_value_t& rawValue, mavlink_param_union_t& paramValue)
{
int compId = msg.compid;
// Insert component if necessary
if (!parameters.contains(compId)) {
parameters.insert(compId, new QMap<QString, QVariant>());
}
// Insert parameter into registry
if (parameters.value(compId)->contains(paramName)) {
parameters.value(compId)->remove(paramName);
}
QVariant param;
// Insert with correct type
// TODO: This is a hack for MAV_AUTOPILOT_ARDUPILOTMEGA until the new version of MAVLink and a fix for their param handling.
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
switch (rawValue.param_type)
{
case MAV_PARAM_TYPE_REAL32:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant(paramValue.param_float);
}
else {
param = QVariant(paramValue.param_float);
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
// qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAV_PARAM_TYPE_UINT8:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant(QChar((unsigned char)paramValue.param_float));
}
else {
param = QVariant(QChar((quint8)paramValue.param_float));
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
//qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAV_PARAM_TYPE_INT8:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant(QChar((char)paramValue.param_float));
}
else {
param = QVariant(QChar((qint8)paramValue.param_float));
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
//qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAV_PARAM_TYPE_INT16:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant((short)paramValue.param_float);
}
else {
param = QVariant((qint16)paramValue.param_float);
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
//qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAV_PARAM_TYPE_UINT16:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant((unsigned short)paramValue.param_float);
}
else {
param = QVariant((quint16)paramValue.param_float);
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
//qDebug() << "RECEIVED PARAM:" << param;
}
break;
case MAV_PARAM_TYPE_UINT32:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant((unsigned int)paramValue.param_float);
}
else {
param = QVariant((quint32)paramValue.param_float);
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
}
break;
case MAV_PARAM_TYPE_INT32:
{
if (getAutopilotType() == MAV_AUTOPILOT_ARDUPILOTMEGA) {
param = QVariant((int)paramValue.param_float);
}
else {
param = QVariant((qint32)paramValue.param_float);
}
parameters.value(compId)->insert(paramName, param);
// Emit change
emit parameterChanged(uasId, compId, paramName, param);
emit parameterChanged(uasId, compId, rawValue.param_count, rawValue.param_index, paramName, param);
// qDebug() << "RECEIVED PARAM:" << param;
}
break;
default:
qCritical() << "INVALID DATA TYPE USED AS PARAMETER VALUE: " << rawValue.param_type;
} //switch (value.param_type)
}
/**
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
* Request parameter, use parameter name to request it.
*/
void UAS::requestParameter(int component, int id)
{
// Request parameter, use parameter name to request it
mavlink_message_t msg;
mavlink_param_request_read_t read;
read.param_index = id;
read.param_id[0] = '\0'; // Enforce null termination
read.target_system = uasId;
read.target_component = component;
mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read);
sendMessage(msg);
//qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM ID" << id;
}
/**
* Request a parameter, use parameter name to request it.
*/
void UAS::requestParameter(int component, const QString& parameter)
{
// Request parameter, use parameter name to request it
mavlink_message_t msg;
mavlink_param_request_read_t read;
read.param_index = -1;
// Copy full param name or maximum max field size
if (parameter.length() > MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN)
{
emit textMessageReceived(uasId, 0, 255, QString("QGC WARNING: Parameter name %1 is more than %2 bytes long. This might lead to errors and mishaps!").arg(parameter).arg(MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN-1));
}
memcpy(read.param_id, parameter.toStdString().c_str(), qMax(parameter.length(), MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN));
read.param_id[15] = '\0'; // Enforce null termination
read.target_system = uasId;
read.target_component = component;
mavlink_msg_param_request_read_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &read);
sendMessage(msg);
//qDebug() << __FILE__ << __LINE__ << "REQUESTING PARAM RETRANSMISSION FROM COMPONENT" << component << "FOR PARAM NAME" << parameter;
}
/**
* @param systemType Type of MAV.
*/
void UAS::setSystemType(int systemType)
{
if((systemType >= MAV_TYPE_GENERIC) && (systemType < MAV_TYPE_ENUM_END))
{
type = systemType;
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
// If the airframe is still generic, change it to a close default type
if (airframe == 0)
{
switch (systemType)
{
case MAV_TYPE_FIXED_WING:
airframe = QGC_AIRFRAME_EASYSTAR;
break;
case MAV_TYPE_QUADROTOR:
airframe = QGC_AIRFRAME_MIKROKOPTER;
break;
}
}
emit systemSpecsChanged(uasId);
}
}
void UAS::setUASName(const QString& name)
{
if (name != "")
{
this->name = name;
writeSettings();
emit nameChanged(name);
emit systemSpecsChanged(uasId);
}
}
void UAS::executeCommand(MAV_CMD command)
{
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint16_t)command;
cmd.confirmation = 0;
cmd.param1 = 0.0f;
cmd.param2 = 0.0f;
cmd.param3 = 0.0f;
cmd.param4 = 0.0f;
cmd.param5 = 0.0f;
cmd.param6 = 0.0f;
cmd.param7 = 0.0f;
cmd.target_system = uasId;
cmd.target_component = 0;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
void UAS::executeCommandAck(int num, bool success)
{
mavlink_message_t msg;
mavlink_command_ack_t ack;
ack.command = num;
ack.result = (success ? 1 : 0);
mavlink_msg_command_ack_encode(mavlink->getSystemId(),mavlink->getComponentId(),&msg,&ack);
sendMessage(msg);
}
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
void UAS::executeCommand(MAV_CMD command, int confirmation, float param1, float param2, float param3, float param4, float param5, float param6, float param7, int component)
{
mavlink_message_t msg;
mavlink_command_long_t cmd;
cmd.command = (uint16_t)command;
cmd.confirmation = confirmation;
cmd.param1 = param1;
cmd.param2 = param2;
cmd.param3 = param3;
cmd.param4 = param4;
cmd.param5 = param5;
cmd.param6 = param6;
cmd.param7 = param7;
cmd.target_system = uasId;
cmd.target_component = component;
mavlink_msg_command_long_encode(mavlink->getSystemId(), mavlink->getComponentId(), &msg, &cmd);
sendMessage(msg);
}
/**
* Launches the system
*
*/
void UAS::launch()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, this->getUASID(), 0, MAV_CMD_NAV_TAKEOFF, 1, 0, 0, 0, 0, 0, 0, 0);
sendMessage(msg);
}
/**
* @warning Depending on the UAS, this might make the rotors of a helicopter spinning
*
*/
void UAS::armSystem()
{
Thomas Gubler
committed
setModeArm(base_mode | MAV_MODE_FLAG_SAFETY_ARMED, custom_mode);
}
/**
* @warning Depending on the UAS, this might completely stop all motors.
*
*/
void UAS::disarmSystem()
{
Thomas Gubler
committed
setModeArm(base_mode & ~MAV_MODE_FLAG_SAFETY_ARMED, custom_mode);
void UAS::toggleArmedState()
{
Thomas Gubler
committed
setModeArm(base_mode ^ MAV_MODE_FLAG_SAFETY_ARMED, custom_mode);
}
void UAS::goAutonomous()
{
setMode((base_mode & ~MAV_MODE_FLAG_MANUAL_INPUT_ENABLED) | (MAV_MODE_FLAG_AUTO_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED | MAV_MODE_FLAG_GUIDED_ENABLED), 0);
}
void UAS::goManual()
{
setMode((base_mode & ~(MAV_MODE_FLAG_AUTO_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED | MAV_MODE_FLAG_GUIDED_ENABLED)) | MAV_MODE_FLAG_MANUAL_INPUT_ENABLED, 0);
}
void UAS::toggleAutonomy()
{
setMode(base_mode ^ MAV_MODE_FLAG_AUTO_ENABLED ^ MAV_MODE_FLAG_MANUAL_INPUT_ENABLED ^ MAV_MODE_FLAG_GUIDED_ENABLED ^ MAV_MODE_FLAG_STABILIZE_ENABLED, 0);
}
/**
* Set the manual control commands.
* This can only be done if the system has manual inputs enabled and is armed.
*/
void UAS::setManualControlCommands(double roll, double pitch, double yaw, double thrust, int xHat, int yHat, int buttons)
{
Bryant
committed
Q_UNUSED(xHat);
Q_UNUSED(yHat);
// Scale values
double rollPitchScaling = 1.0f * 1000.0f;
double yawScaling = 1.0f * 1000.0f;
double thrustScaling = 1.0f * 1000.0f;
manualRollAngle = roll * rollPitchScaling;
manualPitchAngle = pitch * rollPitchScaling;
manualYawAngle = yaw * yawScaling;
manualThrust = thrust * thrustScaling;
// If system has manual inputs enabled and is armed
if(((base_mode & MAV_MODE_FLAG_DECODE_POSITION_MANUAL) && (base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY)) || (base_mode & MAV_MODE_FLAG_HIL_ENABLED))
{
mavlink_message_t message;
mavlink_msg_manual_control_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, (float)manualPitchAngle, (float)manualRollAngle, (float)manualThrust, (float)manualYawAngle, buttons);
sendMessage(message);
//qDebug() << __FILE__ << __LINE__ << ": SENT MANUAL CONTROL MESSAGE: roll" << manualRollAngle << " pitch: " << manualPitchAngle << " yaw: " << manualYawAngle << " thrust: " << manualThrust;
emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds());
}
else
{
//qDebug() << "JOYSTICK/MANUAL CONTROL: IGNORING COMMANDS: Set mode to MANUAL to send joystick commands first";
}
}
void UAS::setManual6DOFControlCommands(double x, double y, double z, double roll, double pitch, double yaw)
{
// If system has manual inputs enabled and is armed
if(((base_mode & MAV_MODE_FLAG_DECODE_POSITION_MANUAL) && (base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY)) || (base_mode & MAV_MODE_FLAG_HIL_ENABLED))
{
mavlink_message_t message;
mavlink_msg_setpoint_6dof_pack(mavlink->getSystemId(), mavlink->getComponentId(), &message, this->uasId, (float)x, (float)y, (float)z, (float)roll, (float)pitch, (float)yaw);
sendMessage(message);
qDebug() << __FILE__ << __LINE__ << ": SENT 6DOF CONTROL MESSAGE: x" << x << " y: " << y << " z: " << z << " roll: " << roll << " pitch: " << pitch << " yaw: " << yaw;
//emit attitudeThrustSetPointChanged(this, roll, pitch, yaw, thrust, QGC::groundTimeMilliseconds());
}
else
{
qDebug() << "3DMOUSE/MANUAL CONTROL: IGNORING COMMANDS: Set mode to MANUAL to send 3DMouse commands first";
}
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
}
/**
* @return the type of the system
*/
int UAS::getSystemType()
{
return this->type;
}
/**
* Halt the uas.
*/
void UAS::halt()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_HOLD, MAV_GOTO_HOLD_AT_CURRENT_POSITION, 0, 0, 0, 0, 0);
sendMessage(msg);
}
/**
* Make the UAS move.
*/
void UAS::go()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_CONTINUE, MAV_GOTO_HOLD_AT_CURRENT_POSITION, 0, 0, 0, 0, 0);
sendMessage(msg);
}
/**
* Order the robot to return home
*/
void UAS::home()
{
mavlink_message_t msg;
double latitude = UASManager::instance()->getHomeLatitude();
double longitude = UASManager::instance()->getHomeLongitude();
double altitude = UASManager::instance()->getHomeAltitude();
int frame = UASManager::instance()->getHomeFrame();
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_OVERRIDE_GOTO, 1, MAV_GOTO_DO_CONTINUE, MAV_GOTO_HOLD_AT_CURRENT_POSITION, frame, 0, latitude, longitude, altitude);
sendMessage(msg);
}
/**
* Order the robot to land on the runway
*/
void UAS::land()
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_NAV_LAND, 1, 0, 0, 0, 0, 0, 0, 0);
sendMessage(msg);
}
*/
void UAS::pairRX(int rxType, int rxSubType)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_START_RX_PAIR, 0, rxType, rxSubType, 0, 0, 0, 0, 0);
sendMessage(msg);
}
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
/**
* The MAV starts the emergency landing procedure. The behaviour depends on the onboard implementation
* and might differ between systems.
*/
void UAS::emergencySTOP()
{
// FIXME MAVLINKV10PORTINGNEEDED
halt();
}
/**
* Shut down this mav - All onboard systems are immediately shut down (e.g. the
* main power line is cut).
* @warning This might lead to a crash.
*
* The command will not be executed until emergencyKILLConfirm is issues immediately afterwards
*/
bool UAS::emergencyKILL()
{
halt();
// FIXME MAVLINKV10PORTINGNEEDED
// bool result = false;
// QMessageBox msgBox;
// msgBox.setIcon(QMessageBox::Critical);
// msgBox.setText("EMERGENCY: KILL ALL MOTORS ON UAS");
// msgBox.setInformativeText("Do you want to cut power on all systems?");
// msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
// msgBox.setDefaultButton(QMessageBox::Cancel);
// int ret = msgBox.exec();
// // Close the message box shortly after the click to prevent accidental clicks
// QTimer::singleShot(5000, &msgBox, SLOT(reject()));
// if (ret == QMessageBox::Yes)
// {
// mavlink_message_t msg;
// // TODO Replace MG System ID with static function call and allow to change ID in GUI
// mavlink_msg_action_pack(MG::SYSTEM::ID, MG::SYSTEM::COMPID, &msg, this->getUASID(), MAV_COMP_ID_IMU, (int)MAV_ACTION_EMCY_KILL);
// // Send message twice to increase chance of reception
// sendMessage(msg);
// sendMessage(msg);
// result = true;
// }
// return result;
return false;
}
/**
* If enabled, connect the flight gear link.
*/
void UAS::enableHilFlightGear(bool enable, QString options, bool sensorHil, QObject * configuration)
{
QGCFlightGearLink* link = dynamic_cast<QGCFlightGearLink*>(simulation);
if (!link || !simulation) {
// Delete wrong sim
if (simulation) {
stopHil();
delete simulation;
}
simulation = new QGCFlightGearLink(this, options);
}
// Connect Flight Gear Link
link = dynamic_cast<QGCFlightGearLink*>(simulation);
link->setStartupArguments(options);
QObject::connect(configuration, SIGNAL(barometerOffsetChanged(float)), link, SLOT(setBarometerOffset(float)));
Lorenz Meier
committed
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
/**
* If enabled, connect the JSBSim link.
*/
void UAS::enableHilJSBSim(bool enable, QString options)
{
QGCJSBSimLink* link = dynamic_cast<QGCJSBSimLink*>(simulation);
if (!link || !simulation) {
// Delete wrong sim
if (simulation) {
stopHil();
delete simulation;
}
simulation = new QGCJSBSimLink(this, options);
}
// Connect Flight Gear Link
link = dynamic_cast<QGCJSBSimLink*>(simulation);
link->setStartupArguments(options);
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
/**
* If enabled, connect the X-plane gear link.
*/
void UAS::enableHilXPlane(bool enable)
{
QGCXPlaneLink* link = dynamic_cast<QGCXPlaneLink*>(simulation);
if (!link || !simulation) {
if (simulation) {
stopHil();
delete simulation;
}
qDebug() << "CREATED NEW XPLANE LINK";
simulation = new QGCXPlaneLink(this);
}
// Connect X-Plane Link
if (enable)
{
startHil();
}
else
{
stopHil();
}
}
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
/**
* @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot)
* @param roll Roll angle (rad)
* @param pitch Pitch angle (rad)
* @param yaw Yaw angle (rad)
* @param rollspeed Roll angular speed (rad/s)
* @param pitchspeed Pitch angular speed (rad/s)
* @param yawspeed Yaw angular speed (rad/s)
* @param lat Latitude, expressed as * 1E7
* @param lon Longitude, expressed as * 1E7
* @param alt Altitude in meters, expressed as * 1000 (millimeters)
* @param vx Ground X Speed (Latitude), expressed as m/s * 100
* @param vy Ground Y Speed (Longitude), expressed as m/s * 100
* @param vz Ground Z Speed (Altitude), expressed as m/s * 100
* @param xacc X acceleration (mg)
* @param yacc Y acceleration (mg)
* @param zacc Z acceleration (mg)
*/
void UAS::sendHilGroundTruth(quint64 time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, double lat, double lon, double alt,
float vx, float vy, float vz, float ind_airspeed, float true_airspeed, float xacc, float yacc, float zacc)
{
Don Gagne
committed
Q_UNUSED(time_us);
Q_UNUSED(xacc);
Q_UNUSED(yacc);
Q_UNUSED(zacc);
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
// Emit attitude for cross-check
emit valueChanged(uasId, "roll sim", "rad", roll, getUnixTime());
emit valueChanged(uasId, "pitch sim", "rad", pitch, getUnixTime());
emit valueChanged(uasId, "yaw sim", "rad", yaw, getUnixTime());
emit valueChanged(uasId, "roll rate sim", "rad/s", rollspeed, getUnixTime());
emit valueChanged(uasId, "pitch rate sim", "rad/s", pitchspeed, getUnixTime());
emit valueChanged(uasId, "yaw rate sim", "rad/s", yawspeed, getUnixTime());
emit valueChanged(uasId, "lat sim", "deg", lat*1e7, getUnixTime());
emit valueChanged(uasId, "lon sim", "deg", lon*1e7, getUnixTime());
emit valueChanged(uasId, "alt sim", "deg", alt*1e3, getUnixTime());
emit valueChanged(uasId, "vx sim", "m/s", vx*1e2, getUnixTime());
emit valueChanged(uasId, "vy sim", "m/s", vy*1e2, getUnixTime());
emit valueChanged(uasId, "vz sim", "m/s", vz*1e2, getUnixTime());
emit valueChanged(uasId, "IAS sim", "m/s", ind_airspeed, getUnixTime());
emit valueChanged(uasId, "TAS sim", "m/s", true_airspeed, getUnixTime());
}
/**
* @param time_us Timestamp (microseconds since UNIX epoch or microseconds since system boot)
* @param roll Roll angle (rad)
* @param pitch Pitch angle (rad)
* @param yaw Yaw angle (rad)
* @param rollspeed Roll angular speed (rad/s)
* @param pitchspeed Pitch angular speed (rad/s)
* @param yawspeed Yaw angular speed (rad/s)
* @param lat Latitude, expressed as * 1E7
* @param lon Longitude, expressed as * 1E7
* @param alt Altitude in meters, expressed as * 1000 (millimeters)
* @param vx Ground X Speed (Latitude), expressed as m/s * 100
* @param vy Ground Y Speed (Longitude), expressed as m/s * 100
* @param vz Ground Z Speed (Altitude), expressed as m/s * 100
* @param xacc X acceleration (mg)
* @param yacc Y acceleration (mg)
* @param zacc Z acceleration (mg)
*/
void UAS::sendHilState(quint64 time_us, float roll, float pitch, float yaw, float rollspeed,
float pitchspeed, float yawspeed, double lat, double lon, double alt,
float vx, float vy, float vz, float ind_airspeed, float true_airspeed, float xacc, float yacc, float zacc)
if (this->base_mode & MAV_MODE_FLAG_HIL_ENABLED)
float q[4];
double cosPhi_2 = cos(double(roll) / 2.0);
double sinPhi_2 = sin(double(roll) / 2.0);
double cosTheta_2 = cos(double(pitch) / 2.0);
double sinTheta_2 = sin(double(pitch) / 2.0);
double cosPsi_2 = cos(double(yaw) / 2.0);
double sinPsi_2 = sin(double(yaw) / 2.0);
q[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
sinPhi_2 * sinTheta_2 * sinPsi_2);
q[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
cosPhi_2 * sinTheta_2 * sinPsi_2);
q[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
sinPhi_2 * cosTheta_2 * sinPsi_2);
q[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
sinPhi_2 * sinTheta_2 * cosPsi_2);
mavlink_message_t msg;
Lorenz Meier
committed
mavlink_msg_hil_state_quaternion_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg,
time_us, q, rollspeed, pitchspeed, yawspeed,
lat*1e7f, lon*1e7f, alt*1000, vx*100, vy*100, vz*100, ind_airspeed*100, true_airspeed*100, xacc*1000/9.81, yacc*1000/9.81, zacc*1000/9.81);
sendMessage(msg);
}
else
{
// Attempt to set HIL mode
Thomas Gubler
committed
setMode(base_mode | MAV_MODE_FLAG_HIL_ENABLED, custom_mode);
qDebug() << __FILE__ << __LINE__ << "HIL is onboard not enabled, trying to enable.";
}
}
Thomas Gubler
committed
/*
* @param abs_pressure Absolute Pressure (hPa)
* @param diff_pressure Differential Pressure (hPa)
*/
void UAS::sendHilSensors(quint64 time_us, float xacc, float yacc, float zacc, float rollspeed, float pitchspeed, float yawspeed,
float xmag, float ymag, float zmag, float abs_pressure, float diff_pressure, float pressure_alt, float temperature, quint32 fields_changed)
if (this->base_mode & MAV_MODE_FLAG_HIL_ENABLED)
mavlink_msg_hil_sensor_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg,
time_us, xacc, yacc, zacc, rollspeed, pitchspeed, yawspeed,
xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature,
fields_changed);
sendMessage(msg);
lastSendTimeSensors = QGC::groundTimeMilliseconds();
}
else
{
// Attempt to set HIL mode
Thomas Gubler
committed
setMode(base_mode | MAV_MODE_FLAG_HIL_ENABLED, custom_mode);
qDebug() << __FILE__ << __LINE__ << "HIL is onboard not enabled, trying to enable.";
}
}
void UAS::sendHilGps(quint64 time_us, double lat, double lon, double alt, int fix_type, float eph, float epv, float vel, float vn, float ve, float vd, float cog, int satellites)
// Only send at 10 Hz max rate
if (QGC::groundTimeMilliseconds() - lastSendTimeGPS < 100)
return;
if (this->base_mode & MAV_MODE_FLAG_HIL_ENABLED)
float course = cog;
// map to 0..2pi
if (course < 0)
// scale from radians to degrees
course = (course / M_PI) * 180.0f;
mavlink_msg_hil_gps_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg,
time_us, fix_type, lat*1e7, lon*1e7, alt*1e3, eph*1e2, epv*1e2, vel*1e2, vn*1e2, ve*1e2, vd*1e2, course*1e2, satellites);
lastSendTimeGPS = QGC::groundTimeMilliseconds();
sendMessage(msg);
}
else
{
// Attempt to set HIL mode
Thomas Gubler
committed
setMode(base_mode | MAV_MODE_FLAG_HIL_ENABLED, custom_mode);
qDebug() << __FILE__ << __LINE__ << "HIL is onboard not enabled, trying to enable.";
}
}
/**
* Connect flight gear link.
**/
void UAS::startHil()
{
if (hilEnabled) return;
hilEnabled = true;
Thomas Gubler
committed
setMode(base_mode | MAV_MODE_FLAG_HIL_ENABLED, custom_mode);
// Connect HIL simulation link
simulation->connectSimulation();
}
/**
* disable flight gear link.
*/
void UAS::stopHil()
{
if (simulation) simulation->disconnectSimulation();
Thomas Gubler
committed
setMode(base_mode & ~MAV_MODE_FLAG_HIL_ENABLED, custom_mode);
hilEnabled = false;
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
}
void UAS::shutdown()
{
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Critical);
msgBox.setText("Shutting down the UAS");
msgBox.setInformativeText("Do you want to shut down the onboard computer?");
msgBox.setStandardButtons(QMessageBox::Yes | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Cancel);
int ret = msgBox.exec();
// Close the message box shortly after the click to prevent accidental clicks
QTimer::singleShot(5000, &msgBox, SLOT(reject()));
if (ret == QMessageBox::Yes)
{
// If the active UAS is set, execute command
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN, 1, 0, 2, 0, 0, 0, 0, 0);
sendMessage(msg);
}
}
/**
* @param x position
* @param y position
* @param z position
* @param yaw
*/
void UAS::setTargetPosition(float x, float y, float z, float yaw)
{
mavlink_message_t msg;
mavlink_msg_command_long_pack(mavlink->getSystemId(), mavlink->getComponentId(), &msg, uasId, MAV_COMP_ID_ALL, MAV_CMD_NAV_PATHPLANNING, 1, 1, 1, 0, yaw, x, y, z);
sendMessage(msg);
}
/**
* @return The name of this system as string in human-readable form
*/
QString UAS::getUASName(void) const
{
QString result;
if (name == "")
{
result = tr("MAV ") + result.sprintf("%03d", getUASID());
}
else
{
result = name;
}
return result;
}
/**
* @return the state of the uas as a short text.
*/
const QString& UAS::getShortState() const
{
return shortStateText;
}
/**
* The mode can be autonomous, guided, manual or armed. It will also return if
* hardware in the loop is being used.
* @return the audio mode text for the id given.
*/
QString UAS::getAudioModeTextFor(int id)
{
QString mode;
uint8_t modeid = id;
// BASE MODE DECODING
if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_AUTO)
{
mode += "autonomous";
}
else if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_GUIDED)
{
mode += "guided";
}
else if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_STABILIZE)
{
mode += "stabilized";
}
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
else if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_MANUAL)
{
mode += "manual";
}
else
{
// Nothing else applies, we're in preflight
mode += "preflight";
}
if (modeid != 0)
{
mode += " mode";
}
// ARMED STATE DECODING
if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_SAFETY)
{
mode.append(" and armed");
}
// HARDWARE IN THE LOOP DECODING
if (modeid & (uint8_t)MAV_MODE_FLAG_DECODE_POSITION_HIL)
{
mode.append(" using hardware in the loop simulation");
}
return mode;
}
/**
* The mode returned can be auto, stabilized, test, manual, preflight or unknown.
* @return the short text of the mode for the id given.
*/
* The mode returned can be auto, stabilized, test, manual, preflight or unknown.
* @return the short text of the mode for the id given.
*/
QString UAS::getShortModeTextFor(uint8_t base_mode, uint32_t custom_mode, int autopilot)
if (base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) {
// use custom_mode - autopilot-specific
if (autopilot == MAV_AUTOPILOT_PX4) {
union px4_custom_mode px4_mode;
px4_mode.data = custom_mode;
if (px4_mode.main_mode == PX4_CUSTOM_MAIN_MODE_MANUAL) {
} else if (px4_mode.main_mode == PX4_CUSTOM_MAIN_MODE_SEATBELT) {
} else if (px4_mode.main_mode == PX4_CUSTOM_MAIN_MODE_EASY) {
} else if (px4_mode.main_mode == PX4_CUSTOM_MAIN_MODE_AUTO) {
if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_READY) {
mode += "|READY";
} else if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_TAKEOFF) {
mode += "|TAKEOFF";
} else if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_LOITER) {
mode += "|LOITER";
} else if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_MISSION) {
mode += "|MISSION";
} else if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_RTL) {
mode += "|RTL";
} else if (px4_mode.sub_mode == PX4_CUSTOM_SUB_MODE_AUTO_LAND) {
mode += "|LAND";
}
// fallback to using base_mode
if (mode.length() == 0) {
// use base_mode - not autopilot-specific
if (base_mode == 0) {
mode += "|PREFLIGHT";
} else if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_AUTO) {
mode += "|AUTO";
} else if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_MANUAL) {
if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_GUIDED) {
mode += "|GUIDED";
} else if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_STABILIZE) {
mode += "|STABILIZED";
}
{
mode = "|UNKNOWN";
qDebug() << __FILE__ << __LINE__ << " Unknown mode: base_mode=" << base_mode << " custom_mode=" << custom_mode << " autopilot=" << autopilot;
}
// ARMED STATE DECODING
if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_SAFETY)
{
mode.prepend("A");
}
else
{
mode.prepend("D");
}
// HARDWARE IN THE LOOP DECODING
if (base_mode & MAV_MODE_FLAG_DECODE_POSITION_HIL)
{
mode.prepend("HIL:");
}
//qDebug() << "base_mode=" << base_mode << " custom_mode=" << custom_mode << " autopilot=" << autopilot << ": " << mode;
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
return mode;
}
const QString& UAS::getShortMode() const
{
return shortModeText;
}
/**
* Add the link and connect a signal to it which will be set off when it is destroyed.
*/
void UAS::addLink(LinkInterface* link)
{
if (!links->contains(link))
{
links->append(link);
connect(link, SIGNAL(destroyed(QObject*)), this, SLOT(removeLink(QObject*)));
}
}
void UAS::removeLink(QObject* object)
{
LinkInterface* link = dynamic_cast<LinkInterface*>(object);
if (link)
{
links->removeAt(links->indexOf(link));
}
}
/**
* @return the list of links
*/
QList<LinkInterface*>* UAS::getLinks()
{
return links;
}
/**
* @rerturn the map of the components
*/
QMap<int, QString> UAS::getComponents()
{
return components;
}
/**
* Set the battery type and the number of cells.
* @param type of the battery
* @param cells Number of cells.
*/
void UAS::setBattery(BatteryType type, int cells)
{
this->batteryType = type;
this->cells = cells;
switch (batteryType)
{
case NICD:
break;
case NIMH:
break;
case LIION:
break;
case LIPOLY:
fullVoltage = this->cells * lipoFull;
emptyVoltage = this->cells * lipoEmpty;
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
break;
case LIFE:
break;
case AGZN:
break;
}
}
/**
* Set the battery specificaitons: empty voltage, warning voltage, and full voltage.
* @param specifications of the battery
*/
void UAS::setBatterySpecs(const QString& specs)
{
if (specs.length() == 0 || specs.contains("%"))
{
batteryRemainingEstimateEnabled = false;
bool ok;
QString percent = specs;
percent = percent.remove("%");
float temp = percent.toFloat(&ok);
if (ok)
{
warnLevelPercent = temp;
}
else
{
emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong");
}
}
else
{
batteryRemainingEstimateEnabled = true;
QString stringList = specs;
stringList = stringList.remove("V");
stringList = stringList.remove("v");
QStringList parts = stringList.split(",");
if (parts.length() == 3)
{
float temp;
bool ok;
// Get the empty voltage
temp = parts.at(0).toFloat(&ok);
if (ok) emptyVoltage = temp;
// Get the warning voltage
temp = parts.at(1).toFloat(&ok);
if (ok) warnVoltage = temp;
// Get the full voltage
temp = parts.at(2).toFloat(&ok);
if (ok) fullVoltage = temp;
}
else
{
emit textMessageReceived(0, 0, 0, "Could not set battery options, format is wrong");
}
}
}
/**
* @return the battery specifications(empty voltage, warning voltage, full voltage)
*/
QString UAS::getBatterySpecs()
{
if (batteryRemainingEstimateEnabled)
{
return QString("%1V,%2V,%3V").arg(emptyVoltage).arg(warnVoltage).arg(fullVoltage);
}
else
{
return QString("%1%").arg(warnLevelPercent);
}
}
/**
* @return the time remaining.
*/
int UAS::calculateTimeRemaining()
{
quint64 dt = QGC::groundTimeMilliseconds() - startTime;
double seconds = dt / 1000.0f;
double voltDifference = startVoltage - currentVoltage;
if (voltDifference <= 0) voltDifference = 0.00000000001f;
double dischargePerSecond = voltDifference / seconds;
int remaining = static_cast<int>((currentVoltage - emptyVoltage) / dischargePerSecond);
// Can never be below 0
if (remaining < 0) remaining = 0;
return remaining;
}
/**
* @return charge level in percent - 0 - 100
*/
float UAS::getChargeLevel()
{
if (batteryRemainingEstimateEnabled)
{
if (lpVoltage < emptyVoltage)
{
chargeLevel = 0.0f;
}
else if (lpVoltage > fullVoltage)
{
chargeLevel = 100.0f;
}
else
{
chargeLevel = 100.0f * ((lpVoltage - emptyVoltage)/(fullVoltage - emptyVoltage));
}
}
return chargeLevel;
}
void UAS::startLowBattAlarm()
{
if (!lowBattAlarm)
{
GAudioOutput::instance()->alert(tr("system %1 has low battery").arg(getUASName()));
QTimer::singleShot(3000, GAudioOutput::instance(), SLOT(startEmergency()));
lowBattAlarm = true;
}
}
void UAS::stopLowBattAlarm()
{
if (lowBattAlarm)
{
GAudioOutput::instance()->stopEmergency();
lowBattAlarm = false;
}
}