Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*=====================================================================
PIXHAWK Micro Air Vehicle Flying Robotics Toolkit
Please see our website at <http://pixhawk.ethz.ch>
(c) 2009, 2010 PIXHAWK PROJECT <http://pixhawk.ethz.ch>
This file is part of the PIXHAWK project
PIXHAWK is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PIXHAWK is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PIXHAWK. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/**
* @file
* @brief Definition of Unmanned Aerial Vehicle object
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#ifndef _UAS_H_
#define _UAS_H_
#include <QDebug>
#include "UASInterface.h"
#include "MG.h"
#include <mavlink.h>
/**
* @brief A generic MAVLINK-connected MAV/UAV
*
* This class represents one vehicle. It can be used like the real vehicle, e.g. a call to halt()
* will automatically send the appropriate messages to the vehicle. The vehicle state will also be
* automatically updated by the comm architecture, so when writing code to e.g. control the vehicle
* no knowledge of the communication infrastructure is needed.
*/
class UAS : public UASInterface {
Q_OBJECT
public:
UAS(int id);
~UAS();
enum BatteryType {
NICD = 0,
NIMH = 1,
LIION = 2,
LIPOLY = 3,
LIFE = 4,
AGZN = 5
}; ///< The type of battery used
static const int lipoFull = 4.2f; ///< 100% charged voltage
static const int lipoEmpty = 3.5f; ///< Discharged voltage
/* MANAGEMENT */
/** @brief The name of the robot */
QString getUASName();
/** @brief Get the unique system id */
int getUASID();
/** @brief The time interval the robot is switched on */
quint64 getUptime();
/** @brief Get the status flag for the communication */
int getCommunicationStatus();
/** @brief Get low-passed voltage */
float filterVoltage();
/** @brief Add one measurement and get low-passed voltage */
float filterVoltage(float value);
/** @brief Get the links associated with this robot */
QList<LinkInterface*>* getLinks();
protected:
int type;
quint64 startTime; ///< The time the UAS was switched on
CommStatus commStatus; ///< Communication status
int uasId; ///< Unique system ID
QString name; ///< Human-friendly name of the vehicle, e.g. bravo
QList<LinkInterface*>* links; ///< List of links this UAS can be reached by
BatteryType batteryType; ///< The battery type
int cells; ///< Number of cells
QList<double> actuatorValues;
QList<QString> actuatorNames;
QList<double> motorValues;
QList<QString> motorNames;
double thrustSum; ///< Sum of forward/up thrust of all thrust actuators
// Battery stats
double fullVoltage; ///< Voltage of the fully charged battery (100%)
double emptyVoltage; ///< Voltage of the empty battery (0%)
double startVoltage; ///< Voltage at system start
double currentVoltage; ///< Voltage currently measured
float lpVoltage; ///< Low-pass filtered voltage
int timeRemaining; ///< Remaining time calculated based on previous and current
double manualRollAngle; ///< Roll angle set by human pilot (radians)
double manualPitchAngle; ///< Pitch angle set by human pilot (radians)
double manualYawAngle; ///< Yaw angle set by human pilot (radians)
double manualThrust; ///< Thrust set by human pilot (radians)
bool controlRollManual; ///< status flag, true if roll is controlled manually
bool controlPitchManual; ///< status flag, true if pitch is controlled manually
bool controlYawManual; ///< status flag, true if yaw is controlled manually
bool controlThrustManual;///< status flag, true if thrust is controlled manually
enum MAV_MODE mode; ///< The current mode of the MAV
quint64 onboardTimeOffset;
/** @brief Set the current battery type */
void setBattery(BatteryType type, int cells);
/** @brief Estimate how much flight time is remaining */
int calculateTimeRemaining();
/** @brief Get the current charge level */
double getChargeLevel();
/** @brief Get the human-readable status message for this code */
void getStatusForCode(int statusCode, QString& uasState, QString& stateDescription);
/** @brief Check if vehicle is in autonomous mode */
bool isAuto();
public slots:
/** @brief Launches the system **/
void launch();
void setWaypoint(Waypoint* wp);
void setWaypointActive(int id);
/** @brief Order the robot to return home / to land on the runway **/
void home();
void halt();
void go();
/** @brief Stops the robot system. If it is an MAV, the robot starts the emergency landing procedure **/
void emergencySTOP();
/** @brief Kills the robot. All systems are immediately shut down (e.g. the main power line is cut). This might lead to a crash **/
bool emergencyKILL();
/** @brief Shut the system cleanly down. Will shut down any onboard computers **/
void shutdown();
/** @brief Set the auto mode. **/
void setAutoMode(bool autoMode);
void requestWaypoints();
void clearWaypointList();
/** @brief Enable the motors */
void enable_motors();
/** @brief Disable the motors */
void disable_motors();
/** @brief Set the values for the manual control of the vehicle */
void setManualControlCommands(double roll, double pitch, double yaw, double thrust);
/** @brief Receive a button pressed event from an input device, e.g. joystick */
void receiveButton(int buttonIndex);
/**
* @brief Add a link associated with this robot
*/
void addLink(LinkInterface* link);
/** @brief Receive a message from one of the communication links. */
void receiveMessage(LinkInterface* link, mavlink_message_t message);
/** @brief Send a message over this link (to this or to all UAS on this link) */
void sendMessage(LinkInterface* link, mavlink_message_t message);
/** @brief Send a message over all links this UAS can be reached with (!= all links) */
void sendMessage(mavlink_message_t message);
/** @brief Set this UAS as the system currently in focus, e.g. in the main display widgets */
void setSelected();
/** @brief Set current mode of operation, e.g. auto or manual */
void setMode(enum MAV_MODE mode);
signals:
/** @brief The main/battery voltage has changed/was updated */
void voltageChanged(int uasId, double voltage);
/** @brief An actuator value has changed */
void actuatorChanged(UASInterface*, int actId, double value);
/** @brief An actuator value has changed */
void actuatorChanged(UASInterface* uas, QString actuatorName, double min, double max, double value);
void motorChanged(UASInterface* uas, QString motorName, double min, double max, double value);
/** @brief The system load (MCU/CPU usage) changed */
void loadChanged(UASInterface* uas, double load);
/** @brief Propagate a heartbeat received from the system */
void heartbeat(UASInterface* uas);
};
#endif // _UAS_H_