Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/** \ingroup Jacobi_Module
* \jacobi_module
* \class JacobiRotation
* \brief Rotation given by a cosine-sine pair.
*
* This class represents a Jacobi or Givens rotation.
* This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
* its cosine \c c and sine \c s as follow:
* \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$
*
* You can apply the respective counter-clockwise rotation to a column vector \c v by
* applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
* \code
* v.applyOnTheLeft(J.adjoint());
* \endcode
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar> class JacobiRotation
{
public:
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Default constructor without any initialization. */
JacobiRotation() {}
/** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
Scalar& c() { return m_c; }
Scalar c() const { return m_c; }
Scalar& s() { return m_s; }
Scalar s() const { return m_s; }
/** Concatenates two planar rotation */
JacobiRotation operator*(const JacobiRotation& other)
{
using numext::conj;
return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }
JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
template<typename Derived>
bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
protected:
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
Scalar m_c, m_s;
};
/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
* \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
*
* \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
typedef typename NumTraits<Scalar>::Real RealScalar;
if(y == Scalar(0))
{
m_c = Scalar(1);
m_s = Scalar(0);
return false;
}
else
{
RealScalar tau = (x-z)/(RealScalar(2)*abs(y));
RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
RealScalar t;
if(tau>RealScalar(0))
{
t = RealScalar(1) / (tau + w);
}
else
{
t = RealScalar(1) / (tau - w);
}
RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
m_c = n;
return true;
}
}
/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
* a diagonal matrix \f$ A = J^* B J \f$
*
* Example: \include Jacobi_makeJacobi.cpp
* Output: \verbinclude Jacobi_makeJacobi.out
*
* \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
template<typename Derived>
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
{
return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
}
/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
* \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
* \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
*
* The value of \a z is returned if \a z is not null (the default is null).
* Also note that G is built such that the cosine is always real.
*
* Example: \include Jacobi_makeGivens.cpp
* Output: \verbinclude Jacobi_makeGivens.out
*
* This function implements the continuous Givens rotation generation algorithm
* found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
* LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
{
makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
}
// specialization for complexes
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
{
using std::sqrt;
using std::abs;
using numext::conj;
m_s = 0;
if(r) *r = m_c * p;
}
else if(p==Scalar(0))
{
m_c = 0;
RealScalar p1 = numext::norm1(p);
RealScalar q1 = numext::norm1(q);
RealScalar u = sqrt(RealScalar(1) + q2/p2);
if(numext::real(p)<RealScalar(0))
RealScalar u = q1 * sqrt(p2 + q2);
if(numext::real(p)<RealScalar(0))
if(r) *r = ps * u;
}
}
}
// specialization for reals
template<typename Scalar>
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
{
if(q==Scalar(0))
{
m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
m_s = Scalar(0);
}
else if(p==Scalar(0))
{
m_c = Scalar(0);
m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
if(p<Scalar(0))
u = -u;
m_c = Scalar(1)/u;
m_s = -t * m_c;
if(r) *r = p * u;
}
else
{
Scalar t = p/q;
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
if(q<Scalar(0))
u = -u;
m_s = -Scalar(1)/u;
m_c = -t * m_s;
if(r) *r = q * u;
}
}
/****************************************************************************************
* Implementation of MatrixBase methods
****************************************************************************************/
/** \jacobi_module
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
}
/** \jacobi_module
* Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
* with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
*
* \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
*/
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
RowXpr x(this->row(p));
RowXpr y(this->row(q));
internal::apply_rotation_in_the_plane(x, y, j);
}
/** \ingroup Jacobi_Module
* Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
* with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
*
* \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
*/
template<typename Derived>
template<typename OtherScalar>
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
{
ColXpr x(this->col(p));
ColXpr y(this->col(q));
internal::apply_rotation_in_the_plane(x, y, j.transpose());
}
namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
{
typedef typename VectorX::Index Index;
typedef typename VectorX::Scalar Scalar;
enum { PacketSize = packet_traits<Scalar>::size };
typedef typename packet_traits<Scalar>::type Packet;
eigen_assert(_x.size() == _y.size());
Index size = _x.size();
Index incrx = _x.innerStride();
Index incry = _y.innerStride();
Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
OtherScalar c = j.c();
OtherScalar s = j.s();
if (c==OtherScalar(1) && s==OtherScalar(0))
return;
/*** dynamic-size vectorized paths ***/
if(VectorX::SizeAtCompileTime == Dynamic &&
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
((incrx==1 && incry==1) || PacketSize == 1))
{
// both vectors are sequentially stored in memory => vectorization
enum { Peeling = 2 };
Index alignedStart = internal::first_aligned(y, size);
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
const Packet pc = pset1<Packet>(c);
const Packet ps = pset1<Packet>(s);
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
for(Index i=0; i<alignedStart; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
Scalar* EIGEN_RESTRICT px = x + alignedStart;
Scalar* EIGEN_RESTRICT py = y + alignedStart;
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
{
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
else
{
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
{
Packet xi = ploadu<Packet>(px);
Packet xi1 = ploadu<Packet>(px+PacketSize);
Packet yi = pload <Packet>(py);
Packet yi1 = pload <Packet>(py+PacketSize);
pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
px += Peeling*PacketSize;
py += Peeling*PacketSize;
}
if(alignedEnd!=peelingEnd)
{
Packet xi = ploadu<Packet>(x+peelingEnd);
Packet yi = pload <Packet>(y+peelingEnd);
pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
}
}
for(Index i=alignedEnd; i<size; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
}
/*** fixed-size vectorized path ***/
else if(VectorX::SizeAtCompileTime != Dynamic &&
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
(VectorX::Flags & VectorY::Flags & AlignedBit))
{
const Packet pc = pset1<Packet>(c);
const Packet ps = pset1<Packet>(s);
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
Scalar* EIGEN_RESTRICT px = x;
Scalar* EIGEN_RESTRICT py = y;
for(Index i=0; i<size; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
/*** non-vectorized path ***/
else
{
for(Index i=0; i<size; ++i)
{
Scalar xi = *x;
Scalar yi = *y;
*x = c * xi + numext::conj(s) * yi;
*y = -s * xi + numext::conj(c) * yi;
} // end namespace internal
} // end namespace Eigen