Newer
Older
// UTM.c
// Original Javascript by Chuck Taylor
// Port to C++ by Alex Hajnal
//
// *** THIS CODE USES 32-BIT FLOATS BY DEFAULT ***
// *** For 64-bit double-precision edit UTM.h: undefine FLOAT_32 and define FLOAT_64
//
// This is a simple port of the code on the Geographic/UTM Coordinate Converter (1) page from Javascript to C++.
// Using this you can easily convert between UTM and WGS84 (latitude and longitude).
// Accuracy seems to be around 50cm (I suspect rounding errors are limiting precision).
// This code is provided as-is and has been minimally tested; enjoy but use at your own risk!
// The license for UTM.cpp and UTM.h is the same as the original Javascript:
// "The C++ source code in UTM.cpp and UTM.h may be copied and reused without restriction."
//
// 1) http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
// QGC Note: This file has been slightly modified to prevent possible conflicts with other parts of the system
#include <math.h>
#define pi 3.14159265358979
/* Ellipsoid model constants (actual values here are for WGS84) */
#define sm_a 6378137.0
#define sm_b 6356752.314
#define sm_EccSquared 6.69437999013e-03
#define UTMScaleFactor 0.9996
// DegToRad
// Converts degrees to radians.
return (deg / 180.0 * pi);
}
// RadToDeg
// Converts radians to degrees.
return (rad / pi * 180.0);
}
// ArcLengthOfMeridian
// Computes the ellipsoidal distance from the equator to a point at a
// given latitude.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// phi - Latitude of the point, in radians.
//
// Globals:
// sm_a - Ellipsoid model major axis.
// sm_b - Ellipsoid model minor axis.
//
// Returns:
// The ellipsoidal distance of the point from the equator, in meters.
double ArcLengthOfMeridian (double phi) {
double alpha, beta, gamma, delta, epsilon, n;
double result;
/* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha */
alpha = ((sm_a + sm_b) / 2.0)
/* Precalculate beta */
beta = (-3.0 * n / 2.0) + (9.0 * pow(n, 3.0) / 16.0)
+ (-3.0 * pow(n, 5.0) / 32.0);
/* Precalculate gamma */
/* Precalculate delta */
/* Precalculate epsilon */
/* Now calculate the sum of the series and return */
result = alpha
* (phi + (beta * sin(2.0 * phi))
+ (gamma * sin(4.0 * phi))
+ (delta * sin(6.0 * phi))
+ (epsilon * sin(8.0 * phi)));
return result;
}
// UTMCentralMeridian
// Determines the central meridian for the given UTM zone.
//
// Inputs:
// zone - An integer value designating the UTM zone, range [1,60].
//
// Returns:
// The central meridian for the given UTM zone, in radians
// Range of the central meridian is the radian equivalent of [-177,+177].
double UTMCentralMeridian(int zone) {
double cmeridian;
cmeridian = DegToRad(-183.0 + ((double)zone * 6.0));
return cmeridian;
}
// FootpointLatitude
//
// Computes the footpoint latitude for use in converting transverse
// Mercator coordinates to ellipsoidal coordinates.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// y - The UTM northing coordinate, in meters.
//
// Returns:
// The footpoint latitude, in radians.
double FootpointLatitude(double y) {
double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
double result;
/* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0)
/* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_;
/* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * pow(n, 3.0) / 32.0)
+ (269.0 * pow(n, 5.0) / 512.0);
/* Precalculate gamma_ (Eq. 10.22) */
/* Precalculate delta_ (Eq. 10.22) */
/* Precalculate epsilon_ (Eq. 10.22) */
/* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * sin(2.0 * y_))
+ (gamma_ * sin(4.0 * y_))
+ (delta_ * sin(6.0 * y_))
+ (epsilon_ * sin(8.0 * y_));
return result;
}
// MapLatLonToXY
// Converts a latitude/longitude pair to x and y coordinates in the
// Transverse Mercator projection. Note that Transverse Mercator is not
// the same as UTM; a scale factor is required to convert between them.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// phi - Latitude of the point, in radians.
// lambda - Longitude of the point, in radians.
// lambda0 - Longitude of the central meridian to be used, in radians.
//
// Outputs:
// x - The x coordinate of the computed point.
// y - The y coordinate of the computed point.
//
// Returns:
// The function does not return a value.
void MapLatLonToXY (double phi, double lambda, double lambda0, double &x, double &y) {
double N, nu2, ep2, t, t2, l;
double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
//double tmp; // Unused
/* Precalculate ep2 */
/* Precalculate nu2 */
/* Precalculate N */
/* Precalculate t */
/* Precalculate l */
l = lambda - lambda0;
/* Precalculate coefficients for l**n in the equations below
so a normal human being can read the expressions for easting
and northing
-- l**1 and l**2 have coefficients of 1.0 */
l3coef = 1.0 - t2 + nu2;
l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);
l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
- 58.0 * t2 * nu2;
l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
- 330.0 * t2 * nu2;
l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
/* Calculate easting (x) */
x = N * cos(phi) * l
+ (N / 6.0 * pow(cos(phi), 3.0) * l3coef * pow(l, 3.0))
+ (N / 120.0 * pow(cos(phi), 5.0) * l5coef * pow(l, 5.0))
+ (N / 5040.0 * pow(cos(phi), 7.0) * l7coef * pow(l, 7.0));
/* Calculate northing (y) */
y = ArcLengthOfMeridian (phi)
+ (t / 2.0 * N * pow(cos(phi), 2.0) * pow(l, 2.0))
+ (t / 24.0 * N * pow(cos(phi), 4.0) * l4coef * pow(l, 4.0))
+ (t / 720.0 * N * pow(cos(phi), 6.0) * l6coef * pow(l, 6.0))
+ (t / 40320.0 * N * pow(cos(phi), 8.0) * l8coef * pow(l, 8.0));
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
return;
}
// MapXYToLatLon
// Converts x and y coordinates in the Transverse Mercator projection to
// a latitude/longitude pair. Note that Transverse Mercator is not
// the same as UTM; a scale factor is required to convert between them.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// x - The easting of the point, in meters.
// y - The northing of the point, in meters.
// lambda0 - Longitude of the central meridian to be used, in radians.
//
// Outputs:
// phi - Latitude in radians.
// lambda - Longitude in radians.
//
// Returns:
// The function does not return a value.
//
// Remarks:
// The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
// N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
// to the footpoint latitude phif.
//
// x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
// to optimize computations.
void MapXYToLatLon (double x, double y, double lambda0, double& phi, double& lambda)
double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
/* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude (y);
/* Precalculate ep2 */
/* Precalculate cos (phif) */
/* Precalculate nuf2 */
/* Precalculate Nf and initialize Nfpow */
Nfpow = Nf;
/* Precalculate tf */
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
tf2 = tf * tf;
tf4 = tf2 * tf2;
/* Precalculate fractional coefficients for x**n in the equations
below to simplify the expressions for latitude and longitude. */
x1frac = 1.0 / (Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**2) */
x2frac = tf / (2.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**3) */
x3frac = 1.0 / (6.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**4) */
x4frac = tf / (24.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**5) */
x5frac = 1.0 / (120.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**6) */
x6frac = tf / (720.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**7) */
x7frac = 1.0 / (5040.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**8) */
x8frac = tf / (40320.0 * Nfpow);
/* Precalculate polynomial coefficients for x**n.
-- x**1 does not have a polynomial coefficient. */
x2poly = -1.0 - nuf2;
x3poly = -1.0 - 2 * tf2 - nuf2;
x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
- 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2);
x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
+ 162.0 * tf2 * nuf2;
x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
/* Calculate latitude */
phi = phif + x2frac * x2poly * (x * x)
+ x4frac * x4poly * pow(x, 4.0)
+ x6frac * x6poly * pow(x, 6.0)
+ x8frac * x8poly * pow(x, 8.0);
/* Calculate longitude */
lambda = lambda0 + x1frac * x
+ x3frac * x3poly * pow(x, 3.0)
+ x5frac * x5poly * pow(x, 5.0)
+ x7frac * x7poly * pow(x, 7.0);
return;
}
// LatLonToUTMXY
// Converts a latitude/longitude pair to x and y coordinates in the
// Universal Transverse Mercator projection.
//
// Inputs:
// lat - Latitude of the point, in radians.
// lon - Longitude of the point, in radians.
// zone - UTM zone to be used for calculating values for x and y.
// If zone is less than 1 or greater than 60, the routine
// will determine the appropriate zone from the value of lon.
//
// Outputs:
// x - The x coordinate (easting) of the computed point. (in meters)
// y - The y coordinate (northing) of the computed point. (in meters)
//
// Returns:
// The UTM zone used for calculating the values of x and y.
int LatLonToUTMXY (double lat, double lon, int zone, double& x, double& y) {
if ( (zone < 1) || (zone > 60) )
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
MapLatLonToXY (DegToRad(lat), DegToRad(lon), UTMCentralMeridian(zone), x, y);
/* Adjust easting and northing for UTM system. */
x = x * UTMScaleFactor + 500000.0;
y = y * UTMScaleFactor;
if (y < 0.0)
y = y + 10000000.0;
return zone;
}
// UTMXYToLatLon
//
// Converts x and y coordinates in the Universal Transverse Mercator
// projection to a latitude/longitude pair.
//
// Inputs:
// x - The easting of the point, in meters.
// y - The northing of the point, in meters.
// zone - The UTM zone in which the point lies.
// southhemi - True if the point is in the southern hemisphere;
// false otherwise.
//
// Outputs:
// lat - The latitude of the point, in radians.
// lon - The longitude of the point, in radians.
//
// Returns:
// The function does not return a value.
void UTMXYToLatLon (double x, double y, int zone, bool southhemi, double& lat, double& lon) {
double cmeridian;
x -= 500000.0;
x /= UTMScaleFactor;
/* If in southern hemisphere, adjust y accordingly. */
if (southhemi)
y -= 10000000.0;
y /= UTMScaleFactor;
cmeridian = UTMCentralMeridian (zone);
MapXYToLatLon (x, y, cmeridian, lat, lon);
return;
}