Newer
Older
/*=====================================================================
PIXHAWK is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PIXHAWK is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PIXHAWK. If not, see <http://www.gnu.org/licenses/>.
======================================================================*/
/**
* @file
* @brief Implementation of simulated system link
*
* @author Lorenz Meier <mavteam@student.ethz.ch>
*
*/
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <cmath>
#include <QTime>
#include <QImage>
#include <QDebug>
#include "MG.h"
#include "LinkManager.h"
#include "MAVLinkSimulationLink.h"
// MAVLINK includes
#include <mavlink.h>
/**
* Create a simulated link. This link is connected to an input and output file.
* The link sends one line at a time at the specified sendrate. The timing of
* the sendrate is free of drift, which means it is stable on the long run.
* However, small deviations are mixed in to vary the sendrate slightly
* in order to simulate disturbances on a real communication link.
*
* @param readFile The file with the messages to read (must be in ASCII format, line breaks can be Unix or Windows style)
* @param writeFile The received messages are written to that file
* @param rate The rate at which the messages are sent (in intervals of milliseconds)
**/
MAVLinkSimulationLink::MAVLinkSimulationLink(QString readFile, QString writeFile, int rate) :
readyBytes(0),
timeOffset(0)
{
this->id = getNextLinkId();
LinkManager::instance()->add(this);
this->rate = rate;
_isConnected = false;
}
else
{
this->name = "MAVLink simulation link";
}
// Comments on the variables can be found in the header file
simulationFile = new QFile(readFile, this);
if (simulationFile->exists() && simulationFile->open(QIODevice::ReadOnly | QIODevice::Text))
{
simulationHeader = simulationFile->readLine();
}
receiveFile = new QFile(writeFile, this);
lastSent = MG::TIME::getGroundTimeNow();
// Initialize the pseudo-random number generator
srand(QTime::currentTime().msec());
maxTimeNoise = 0;
}
MAVLinkSimulationLink::~MAVLinkSimulationLink()
{
//TODO Check destructor
// fileStream->flush();
// outStream->flush();
}
void MAVLinkSimulationLink::run()
{
status.mode = MAV_MODE_UNINIT;
status.status = MAV_STATE_UNINIT;
status.vbat = 0;
status.motor_block = 1;
status.packet_drop = 0;
forever
{
static quint64 last = 0;
if (MG::TIME::getGroundTimeNow() - last >= rate)
{
if (_isConnected)
{
mainloop();
emit bytesReady(this);
}
last = MG::TIME::getGroundTimeNow();
}
msleep((rate / 20));
}
}
void MAVLinkSimulationLink::enqueue(uint8_t* stream, uint8_t* index, mavlink_message_t* msg)
{
// Allocate buffer with packet data
uint8_t buf[MAVLINK_MAX_PACKET_LEN];
unsigned int bufferlength = message_to_send_buffer(buf, msg);
//add data into datastream
memcpy(stream+(*index),buf, bufferlength);
(*index) += bufferlength;
}
void MAVLinkSimulationLink::mainloop()
{
// Test for encoding / decoding packets
// Test data stream
// Fake system values
uint8_t systemId = 220;
uint8_t componentId = 0;
uint16_t version = 1000;
static float fullVoltage = 4.2 * 3;
static float emptyVoltage = 3.35 * 3;
static float voltage = fullVoltage;
static float drainRate = 0.0025; // x.xx% of the capacity is linearly drained per second
attitude_t attitude;
raw_aux_t rawAuxValues;
raw_imu_t rawImuValues;
raw_sensor_t rawSensorValues;
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
int bufferlength;
int messageSize;
mavlink_message_t msg;
// Timers
static unsigned int rate1hzCounter = 1;
static unsigned int rate10hzCounter = 1;
static unsigned int rate50hzCounter = 1;
// Vary values
// VOLTAGE
// The battery is drained constantly
voltage = voltage - ((fullVoltage - emptyVoltage) * drainRate / rate);
if (voltage < 3.550 * 3) voltage = 3.550 * 3;
// BOOT
// Pack message and get size of encoded byte string
messageSize = message_boot_pack(systemId, componentId, &msg, version);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
state++;
}
// 50 HZ TASKS
if (rate50hzCounter == 1000 / rate / 40)
{
if (simulationFile->isOpen())
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
if (simulationFile->atEnd())
{
// We reached the end of the file, start from scratch
simulationFile->reset();
simulationHeader = simulationFile->readLine();
}
// Data was made available, read one line
// first entry is the timestamp
QString values = QString(simulationFile->readLine());
QStringList parts = values.split("\t");
QStringList keys = simulationHeader.split("\t");
//qDebug() << simulationHeader;
//qDebug() << values;
bool ok;
static quint64 lastTime = 0;
static quint64 baseTime = 0;
quint64 time = QString(parts.first()).toLongLong(&ok, 10);
if (ok)
{
if (timeOffset == 0)
{
timeOffset = time;
baseTime = time;
}
if (lastTime > time)
{
// We have wrapped around in the logfile
// Add the measurement time interval to the base time
baseTime += lastTime - timeOffset;
}
lastTime = time;
time = time - timeOffset + baseTime;
// Gather individual measurement values
for (int i = 1; i < (parts.size() - 1); ++i)
{
// Get one data field
bool res;
double d = QString(parts.at(i)).toDouble(&res);
if (!res) d = 0;
//qDebug() << "TIME" << time << "VALUE" << d;
//emit valueChanged(220, keys.at(i), d, MG::TIME::getGroundTimeNow());
if (keys.value(i, "") == "Accel._X")
{
rawImuValues.xacc = d;
}
if (keys.value(i, "") == "Accel._Y")
{
rawImuValues.yacc = d;
}
if (keys.value(i, "") == "Accel._Z")
{
rawImuValues.zacc = d;
}
if (keys.value(i, "") == "Gyro_Phi")
{
rawImuValues.xgyro = d;
}
if (keys.value(i, "") == "Gyro_Theta")
{
rawImuValues.ygyro = d;
}
if (keys.value(i, "") == "Gyro_Psi")
{
rawImuValues.zgyro = d;
}
if (keys.value(i, "") == "Pressure")
{
rawAuxValues.baro = d;
}
if (keys.value(i, "") == "Battery")
{
rawAuxValues.vbat = d;
}
if (keys.value(i, "") == "roll_IMU")
{
attitude.roll = d;
}
if (keys.value(i, "") == "pitch_IMU")
{
attitude.pitch = d;
}
if (keys.value(i, "") == "yaw_IMU")
{
attitude.yaw = d;
}
//Accel._X Accel._Y Accel._Z Battery Bottom_Rotor CPU_Load Ground_Dist. Gyro_Phi Gyro_Psi Gyro_Theta Left_Servo Mag._X Mag._Y Mag._Z Pressure Right_Servo Temperature Top_Rotor pitch_IMU roll_IMU yaw_IMU
}
// Send out packets
// ATTITUDE
attitude.msec = time;
// Pack message and get size of encoded byte string
message_attitude_encode(systemId, componentId, &msg, &attitude);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
// IMU
rawImuValues.msec = time;
rawImuValues.xmag = 0;
rawImuValues.ymag = 0;
rawImuValues.zmag = 0;
// Pack message and get size of encoded byte string
message_raw_imu_encode(systemId, componentId, &msg, &rawImuValues);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
//qDebug() << "ATTITUDE" << "BUF LEN" << bufferlength << "POINTER" << streampointer;
//qDebug() << "REALTIME" << MG::TIME::getGroundTimeNow() << "ONBOARDTIME" << attitude.msec << "ROLL" << attitude.roll;
}
rate50hzCounter = 1;
}
// 10 HZ TASKS
if (rate10hzCounter == 1000 / rate / 9)
{
rate10hzCounter = 1;
}
// 1 HZ TASKS
if (rate1hzCounter == 1000 / rate / 1)
{
// STATE
static int statusCounter = 0;
if (statusCounter == 100)
{
status.mode = (status.mode + 1) % MAV_MODE_TEST3;
statusCounter = 0;
}
statusCounter++;
status.vbat = voltage;
messageSize = message_sys_status_encode(systemId, componentId, &msg, &status);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
/*
// Pack message and get size of encoded byte string
messageSize = message_boot_pack(systemId, componentId, &msg, version);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;*/
static int typeCounter = 0;
uint8_t mavType = typeCounter % (OCU);
typeCounter++;
messageSize = message_heartbeat_pack(systemId, componentId, &msg, mavType);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
//qDebug() << "BOOT" << "BUF LEN" << bufferlength << "POINTER" << streampointer;
// 50 HZ TASKS
if (rate50hzCounter == 1000 / rate / 50)
{
// Attitude
// Pack message and get size of encoded byte string
messageSize = message_attitude_pack(systemId, componentId, &msg, usec, roll, pitch, yaw, 0, 0, 0);
// Allocate buffer with packet data
bufferlength = message_to_send_buffer(buffer, &msg);
//add data into datastream
memcpy(stream+streampointer,buffer, bufferlength);
streampointer += bufferlength;
rate50hzCounter = 1;
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
readyBufferMutex.lock();
for (int i = 0; i < streampointer; i++)
{
readyBuffer.enqueue(*(stream + i));
}
readyBufferMutex.unlock();
// Increment counters after full main loop
rate1hzCounter++;
rate10hzCounter++;
rate50hzCounter++;
}
qint64 MAVLinkSimulationLink::bytesAvailable()
{
readyBufferMutex.lock();
qint64 size = readyBuffer.size();
readyBufferMutex.unlock();
return size;
}
void MAVLinkSimulationLink::writeBytes(const char* data, qint64 size)
{
qDebug() << "Simulation received " << size << " bytes from groundstation: ";
// Increase write counter
//bitsSentTotal += size * 8;
// Parse bytes
mavlink_message_t msg;
mavlink_status_t comm;
// Output all bytes as hex digits
int i;
for (i=0; i<size; i++)
{
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
if (mavlink_parse_char(this->id, data[i], &msg, &comm))
{
// MESSAGE RECEIVED!
switch (msg.msgid)
{
// SET THE SYSTEM MODE
case MAVLINK_MSG_ID_SET_MODE:
{
set_mode_t mode;
message_set_mode_decode(&msg, &mode);
// Set mode indepent of mode.target
status.mode = mode.mode;
}
// EXECUTE OPERATOR ACTIONS
case MAVLINK_MSG_ID_ACTION:
{
action_t action;
message_action_decode(&msg, &action);
switch (action.action)
{
case MAV_ACTION_LAUNCH:
status.status = MAV_STATE_ACTIVE;
status.mode = MAV_MODE_AUTO;
break;
case MAV_ACTION_RETURN:
status.status = MAV_STATE_LANDING;
break;
case MAV_ACTION_MOTORS_START:
status.status = MAV_STATE_ACTIVE;
status.mode = MAV_MODE_LOCKED;
break;
case MAV_ACTION_MOTORS_STOP:
status.status = MAV_STATE_STANDBY;
status.mode = MAV_MODE_LOCKED;
break;
case MAV_ACTION_EMCY_KILL:
status.status = MAV_STATE_EMERGENCY;
status.mode = MAV_MODE_MANUAL;
break;
case MAV_ACTION_SHUTDOWN:
status.status = MAV_STATE_POWEROFF;
status.mode = MAV_MODE_LOCKED;
break;
unsigned char v=data[i];
fprintf(stderr,"%02x ", v);
}
fprintf(stderr,"\n");
// Update comm status
status.packet_drop = comm.packet_rx_drop_count;
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
}
void MAVLinkSimulationLink::readBytes(char* const data, qint64 maxLength) {
// Lock concurrent resource readyBuffer
readyBufferMutex.lock();
qint64 len = maxLength;
if (maxLength > readyBuffer.size()) len = readyBuffer.size();
for (unsigned int i = 0; i < len; i++)
{
*(data + i) = readyBuffer.takeFirst();
}
QByteArray b(data, len);
emit bytesReceived(this, b);
readyBufferMutex.unlock();
// if (len > 0)
// {
// qDebug() << "Simulation sent " << len << " bytes to groundstation: ";
//
// /* Increase write counter */
// //bitsSentTotal += size * 8;
//
// //Output all bytes as hex digits
// int i;
// for (i=0; i<len; i++)
// {
// unsigned int v=data[i];
// fprintf(stderr,"%02x ", v);
// }
// fprintf(stderr,"\n");
// }
}
/**
* Set the maximum time deviation noise. This amount (in milliseconds) is
* the maximum time offset (+/-) from the specified message send rate.
*
* @param milliseconds The maximum time offset (in milliseconds)
*
* @bug The current implementation might induce one milliseconds additional
* discrepancy, this will be fixed by multithreading
**/
void MAVLinkSimulationLink::setMaximumTimeNoise(int milliseconds) {
maxTimeNoise = milliseconds;
}
/**
* Add or subtract a pseudo random time offset. The maximum time offset is
* defined by setMaximumTimeNoise().
*
* @see setMaximumTimeNoise()
**/
void MAVLinkSimulationLink::addTimeNoise() {
/* Calculate the time deviation */
if(maxTimeNoise == 0) {
/* Don't do expensive calculations if no noise is desired */
timer->setInterval(rate);
} else {
/* Calculate random time noise (gauss distribution):
*
* (1) (2 * rand()) / RAND_MAX: Number between 0 and 2
* (induces numerical noise through floating point representation,
* ignored here)
*
* (2) ((2 * rand()) / RAND_MAX) - 1: Number between -1 and 1
*
* (3) Complete term: Number between -maxTimeNoise and +maxTimeNoise
*/
double timeDeviation = (((2 * rand()) / RAND_MAX) - 1) * maxTimeNoise;
timer->setInterval(static_cast<int>(rate + floor(timeDeviation)));
}
}
/**
* Disconnect the connection.
*
* @return True if connection has been disconnected, false if connection
* couldn't be disconnected.
**/
bool MAVLinkSimulationLink::disconnect() {
if(isConnected()) {
// timer->stop();
_isConnected = false;
emit disconnected();
exit();
}
return true;
}
/**
* Connect the link.
*
* @return True if connection has been established, false if connection
* couldn't be established.
**/
bool MAVLinkSimulationLink::connect()
{
_isConnected = true;
start(LowPriority);
// timer->start(rate);
return true;
}
/**
* Check if connection is active.
*
* @return True if link is connected, false otherwise.
**/
bool MAVLinkSimulationLink::isConnected() {
return _isConnected;
}
int MAVLinkSimulationLink::getId()
{
return id;
}
QString MAVLinkSimulationLink::getName()
{
return name;
}
qint64 MAVLinkSimulationLink::getNominalDataRate() {
/* 100 Mbit is reasonable fast and sufficient for all embedded applications */
return 100000000;
}
qint64 MAVLinkSimulationLink::getTotalUpstream() {
return 0;
//TODO Add functionality here
// @todo Add functionality here
}
qint64 MAVLinkSimulationLink::getShortTermUpstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getCurrentUpstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getMaxUpstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getBitsSent() {
return 0;
}
qint64 MAVLinkSimulationLink::getBitsReceived() {
return 0;
}
qint64 MAVLinkSimulationLink::getTotalDownstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getShortTermDownstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getCurrentDownstream() {
return 0;
}
qint64 MAVLinkSimulationLink::getMaxDownstream() {
return 0;
}
bool MAVLinkSimulationLink::isFullDuplex() {
/* Full duplex is no problem when running in pure software, but this is a serial simulation */
return false;
}
int MAVLinkSimulationLink::getLinkQuality() {
/* The Link quality is always perfect when running in software */
return 100;
}