Newer
Older
#include "OptimisationTools.h"
namespace OptimisationTools {
namespace {
} // end anonymous namespace
bool dijkstraAlgorithm(const int numElements, int startIndex, int endIndex, QVector<int> &elementPath, std::function<double (const int, const int)> distanceDij)
{
if ( numElements < 0
|| startIndex < 0
|| endIndex < 0
|| startIndex >= numElements
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
return false;
}
// Node struct
// predecessorIndex is the index of the predecessor node (nodeList[predecessorIndex])
// distance is the distance between the node and the start node
// node number is stored by the position in nodeList
struct Node{
int predecessorIndex = -1;
double distance = std::numeric_limits<qreal>::infinity();
};
// The list with all Nodes (elements)
QVector<Node> nodeList(numElements);
// This list will be initalized with (pointer to) all elements of nodeList.
// Elements will be successively remove during the execution of the Dijkstra Algorithm.
QVector<int> workingSet(numElements);
//append elements to node list
for (int i = 0; i < numElements; ++i) workingSet[i] = i;
nodeList[startIndex].distance = 0;
// qDebug() << "nodeList" ;
// for (auto node : nodeList) {
// qDebug() << "predecessor: " << node.predecessorIndex;
// qDebug() << "distance: " << node.distance;
// }
// qDebug() << "workingSet";
// for (auto node : workingSet) {
// qDebug() << "index: " << node;
// }
// Dijkstra Algorithm
// https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
while (workingSet.size() > 0) {
// serach Node with minimal distance
double minDist = std::numeric_limits<qreal>::infinity();
int minDistIndex_WS = -1; // WS = workinSet
for (int i = 0; i < workingSet.size(); ++i) {
const int nodeIndex = workingSet.at(i);
const double dist = nodeList.at(nodeIndex).distance;
if (dist < minDist) {
minDist = dist;
minDistIndex_WS = i;
}
}
if (minDistIndex_WS == -1)
return false;
int indexU_NL = workingSet.takeAt(minDistIndex_WS); // NL = nodeList
if (indexU_NL == endIndex) // shortest path found
break;
const double distanceU = nodeList.at(indexU_NL).distance;
//update distance
for (int i = 0; i < workingSet.size(); ++i) {
int indexV_NL = workingSet[i]; // NL = nodeList
Node* v = &nodeList[indexV_NL];
double dist = distanceDij(indexU_NL, indexV_NL);
// is ther an alternative path which is shorter?
double alternative = distanceU + dist;
if (alternative < v->distance) {
v->distance = alternative;
v->predecessorIndex = indexU_NL;
}
}
}
// end Djikstra Algorithm
// reverse assemble path
int e = endIndex;
while (1) {
if (e == -1) {
if (elementPath[0] == startIndex)// check if starting point was reached
break;
return false;
}
elementPath.prepend(e);
//Update Node
e = nodeList[e].predecessorIndex;
}
return true;
}