Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import pandas as pd
import numpy as np
from abc import ABC, abstractmethod
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm
import os
import json
from helpers.ta_localization_final import d_TA, p_sk_apprx, p_sk_exact, p_sk_exact_no_mp, p_sk_apprx_no_mp
class CellMeasurementData():
def __init__(self, path, ct_candidates_path=None):
self._samples = pd.read_csv(path)
if ct_candidates_path:
self._ct_candidates = pd.read_csv(ct_candidates_path)
self._row = self._samples.iloc[0]
self.ta = self._samples.TA.to_numpy().astype(int)
self._rho = np.full(len(self.ta), 20)
self.sigma = np.round(self._rho/1.5, decimals=3)
self._prepare_positions()
if ct_candidates_path:
self._prepare_ct_candidates()
def _prepare_positions(self):
self.x_ue, self.y_ue = self._samples.x, self._samples.y
self.x_bs, self.y_bs = 0, 0
fig = plt.figure()
radius = self.ta*d_TA + d_TA + 3*self.sigma
ax = plt.subplot(1,2,1); plt.grid(); plt.xlabel('x / m'); plt.ylabel('y / m')
ax.plot(self.x_ue, self.y_ue, 'o', label='RTR locations')
for ii in range(self.ta.shape[0]):
ax.add_patch( plt.Circle((self.x_ue[ii], self.y_ue[ii]), radius[ii], color='g', fill=False) )
ax.plot(np.nan,np.nan,'g-',label='Timing advance')
plt.plot(self.x_bs, self.y_bs, '*', color='orange', label='eNB (A1)')
ax.set_aspect('equal')
# Get map limits
xmin, xmax = ax.get_xlim(); xmin = np.floor(xmin); xmax = np.ceil(xmax)
ymin, ymax = ax.get_ylim(); ymin = np.floor(ymin); ymax = np.ceil(ymax)
plt.close()
self._xmin, self._xmax = xmin, xmax
self._ymin, self._ymax = ymin, ymax
def _prepare_ct_candidates(self):
self._x_sk, self._y_sk =self._ct_candidates[['x', 'y']]
mask_sk = (self._x_sk>=self._xmin) & (self._x_sk<=self._xmax) & (self._y_sk>=self._ymin) & (self._y_sk<=self._ymax)
self._x_sk_cand = self._x_sk[mask_sk]
self._y_sk_cand = self._y_sk[mask_sk]
def get_position_limits(self):
return (self._xmin, self._xmax), (self._ymin, self._ymax)
def get_ct_candidates_candidates(self):
return self._x_sk_cand, self._y_sk_cand
def get_logs(self):
return {
"number_samples": len(self.x_ue),
"map_range": [self._xmax - self._xmin, self._ymax - self._ymin],
"mean_distance_bs": np.mean(self._samples['dist_to_bs']),
"ground_truth": [self.x_bs, self.y_bs],
"measurement_range": [
np.max(self.x_ue) - np.min(self.x_ue),
np.max(self.y_ue) - np.min(self.y_ue)
]
}
class PriorVariant(ABC):
@abstractmethod
def get_locations(self):
pass
@abstractmethod
def fit(self, data : CellMeasurementData):
pass
@abstractmethod
def plot_posterior(self, prob_norm, map_estimate, savepath=None):
pass
@abstractmethod
def evaluate(self):
pass
def get_logs(self):
return {
**self._logs
}
class UniformPositions(PriorVariant):
def __init__(self, Ds=50):
self._Ds = Ds
def fit(self, data : CellMeasurementData):
self._data = data
self._logs = {}
return self
def get_locations(self):
(self._xmin, self._xmax), (self._ymin, self._ymax) = self._data.get_position_limits()
x = np.arange(self._xmin, self._xmax+1, self._Ds)
y = np.arange(self._ymin, self._ymax+1, self._Ds)
xx, yy = np.meshgrid(x, y)
xx = xx.flatten()
yy = yy.flatten()
self._x = x; self._y = y
self._xx = xx; self._yy = yy
return xx, yy
def _posterior_std(self, prob_norm, candidates):
x_mean = np.sum(prob_norm * self._xx)
x_var = np.sum(prob_norm * (self._xx - x_mean)**2)
y_mean = np.sum(prob_norm * self._yy)
y_var = np.sum(prob_norm * (self._yy - y_mean)**2)
return np.max(np.sqrt(np.array([x_var, y_var])))
def evaluate(self, prob_norm):
gt = np.array([self._data.x_bs, self._data.y_bs])
candidates = np.vstack((self._xx, self._yy)).transpose()
self._gt_index = np.argmin(np.linalg.norm(gt - candidates, axis=1))
self._logs['confidence'] = np.max(prob_norm)
self._logs['is_correct'] = bool(self._gt_index == np.argmax(prob_norm))
self._logs['number_candidate_locations'] = len(self._xx)
self._logs['posterior_std'] = self._posterior_std(prob_norm, candidates)
def plot_posterior(self, prob_norm, map_estimate, savepath=None):
x_map, y_map = map_estimate
fig = plt.figure()
axs = plt.gca()
img = axs.scatter(self._xx, self._yy, c=prob_norm, marker='s') # Just quick check (horribly slow)
axs.plot(self._data.x_bs, self._data.y_bs, '*', color='orange', label='Ground Truth')
axs.plot(x_map, y_map, '^', color='magenta', label='MAP')
axs.plot(self._data.x_ue, self._data.y_ue, 'ro', label="Measurements")
axs.set_aspect('equal')
plt.legend()
if savepath is None: plt.show()
else: plt.savefig(savepath, bbox_inches="tight")
plt.close()
class CandidatePositions(PriorVariant):
def __init__(self):
pass
def fit(self, data : CellMeasurementData):
self._data = data
self._logs = {}
return self
def get_locations(self):
self._xx, self._yy = self._data.get_ct_candidates_candidates()
return self._xx, self._yy
def evaluate(self, prob_norm):
gt = np.array([self._data.x_bs, self._data.y_bs])
candidates = np.vstack((self._xx, self._yy)).transpose()
self._gt_index = np.argmin(np.linalg.norm(gt - candidates, axis=1))
self._logs['confidence'] = np.max(prob_norm)
self._logs['is_correct'] = bool(self._gt_index == np.argmax(prob_norm))
def plot_posterior(self, prob_norm, map_estimate, savepath=None):
plt.figure()
labels = [
f"eNodeB {i}" for i in range(len(prob_norm))
]
barlist = plt.bar(labels, prob_norm)
barlist[self._gt_index].set_color('r')
barlist[self._gt_index].set_label("Ground Truth")
plt.ylabel("Posterior")
plt.xlabel("Candidate eNodeBs")
plt.grid()
plt.legend()
if savepath is None: plt.show()
else: plt.savefig(savepath, bbox_inches="tight")
plt.close()
'''
Run for one Cell
'''
class Estimator():
def __init__(self, candidates : PriorVariant, lam=0.001, approximate_treshold=10):
self._candidates = candidates
self._lambda = lam
self._approximate_treshold = approximate_treshold
if self._lambda is False:
print("Using non-multipath variant of estimator")
def run(self, data : CellMeasurementData):
self._data = data
self._xx, self._yy = self._candidates.fit(self._data).get_locations()
# Compute probability for each candidate location
prob_log = np.log(
np.full(self._xx.shape, 1.0, dtype=float)
)
for ii in range(len(data.ta)):
d_hat = np.sqrt((self._xx-data.x_ue[ii])**2 + (self._yy-data.y_ue[ii])**2)
#Split into approximate and exact computation based on d_hat / sigma ratio
idx_apprx = np.where(d_hat > self._approximate_treshold * data.sigma[ii])[0]
idx_exact = np.where(~np.in1d(range(len(d_hat)), idx_apprx))[0]
if self._lambda is False:
if len(idx_apprx):
prob_log[idx_apprx] += np.log( p_sk_apprx_no_mp(data.ta[ii])(d_hat[idx_apprx], data.sigma[ii]) + 1e-2)
if len(idx_exact):
prob_log[idx_exact] += np.log( p_sk_exact_no_mp(data.ta[ii])(d_hat[idx_exact], data.sigma[ii]) + 1e-2)
else:
if len(idx_apprx):
prob_log[idx_apprx] += np.log( p_sk_apprx(data.ta[ii])(d_hat[idx_apprx], data.sigma[ii], λ=self._lambda) + 1e-2)
if len(idx_exact):
prob_log[idx_exact] += np.log( p_sk_exact(data.ta[ii])(d_hat[idx_exact], data.sigma[ii], λ=self._lambda) + 1e-2)
self._prob_log = prob_log
self._prob_norm = np.exp(prob_log - np.log(np.nansum(np.exp(prob_log))))
return self
def map_estimate(self):
idx = np.nanargmax(self._prob_norm)
x_map = self._xx[idx]; y_map = self._yy[idx]
return x_map, y_map
def evaluate_candidate(self):
self._candidates.evaluate(self._prob_norm)
def plot_posterior(self, savepath=None):
self._candidates.plot_posterior(
self._prob_norm,
self.map_estimate(),
savepath
)
def save_prob_log(self, path):
np.save(path, self._prob_log, allow_pickle=False)
def evaluate(self):
x_map, y_map = self.map_estimate()
return np.sqrt((x_map-self._data.x_bs)**2 + (y_map-self._data.y_bs)**2)
def get_logs(self):
return {
"map_estimate": list(self.map_estimate()),
"map_error": self.evaluate(),
**self._candidates.get_logs()
}
class SimulationRun():
def __init__(self, estimator, data_paths, log_path, name, ct_candidates_path=None, plot_posterior=True):
self._data_paths = data_paths
self._estimator = estimator
self._ct_candidates_path = ct_candidates_path
self._log_path = log_path
self._name = name
timestamp = datetime.now().strftime("run_%m-%d-%Y_%H:%M:%S")
self._name = f"{timestamp}_{self._name}"
self._run_path = os.path.join(self._log_path, self._name)
self._plot_posterior = plot_posterior
def _prepare_run(self):
os.mkdir(self._run_path)
self._complete_logs = []
def _save_logs(self):
with open(os.path.join(self._run_path, "results.json"), "w") as f:
json.dump(self._complete_logs, f)
def run(self):
self._prepare_run()
for idx, data_path in tqdm(enumerate(self._data_paths)):
iteration_path = os.path.join(self._run_path, str(idx))
os.mkdir(iteration_path)
'''
Run the estimator
'''
data = CellMeasurementData(
data_path,
self._ct_candidates_path
)
self._estimator.run(data)
self._estimator.evaluate_candidate()
if self._plot_posterior:
self._estimator.plot_posterior(
os.path.join(iteration_path, "posterior.jpg")
)
self._estimator.save_prob_log(
os.path.join(iteration_path, "prob_log.npy")
)
self._complete_logs.append({
**self._estimator.get_logs(),
**data.get_logs()
})
self._save_logs()
'''
Reference Implementation:
'''
'''
Urban
'''
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=0.001,
approximate_treshold=10
),
[f"data/urban/{idx}.csv" for idx in range(1,116)],
"results",
"uniform_urban_0_001_uniform",
plot_posterior=False
).run()
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=False,
approximate_treshold=10
),
[f"data/urban_no_mp/{idx}.csv" for idx in range(1,116)],
"results",
"uniform_urban_oracle_no_mp",
plot_posterior=False
).run()
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=False,
approximate_treshold=10
),
[f"data/urban/{idx}.csv" for idx in range(1,116)],
"results",
"uniform_urban_baseline_no_mp",
plot_posterior=False
).run()
'''
Rural
'''
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=0.01,
approximate_treshold=10
),
[f"data/rural/{idx}.csv" for idx in range(1,76)],
"results",
"uniform_rural_0_01_uniform",
plot_posterior=False
).run()
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=False,
approximate_treshold=10
),
[f"data/rural_no_mp/{idx}.csv" for idx in range(1,76)],
"results",
"uniform_rural_oracle_no_mp",
plot_posterior=False
).run()
SimulationRun(
Estimator(
UniformPositions(Ds=10),
lam=False,
approximate_treshold=10
),
[f"data/rural/{idx}.csv" for idx in range(1,76)],
"results",
"uniform_rural_baseline_no_mp",
plot_posterior=False
).run()
'''
When available a cell-tower candidate file can be passed as well:
SimulationRun(
Estimator(
CandidatePositions(),
lam=0.01,
approximate_treshold=10
),
[f"data/rural/{idx}.csv" for idx in range(1, 76)],
"results",
"rural_categorical_0_01_exact",
ct_candidates_path='cell_tower_sites.csv',
plot_posterior=False
).run()
'''